Results 81 to 90 of about 1,589,665 (327)
BS12 A novel physics-based artificial intelligence technique rapidly reconstructs the 3D velocity, shear stress and pressure fields in coronary arteries. [PDF]
Rob Krams+10 more
openalex +1 more source
Dislocation‐Mediated Thermoelectric Performance and Mechanical Behavior
Dislocations can scatter phonons to reduce thermal conductivity, thereby enhance thermoelectric performance. However, dislocations also impact mechanical properties, leading to increased brittleness and altered plasticity. It is essential to clarify the complex relationship between dislocations, thermal transport, and mechanical stability to achieve a ...
Bangzhi Ge, Yuan Yu, Chongjian Zhou
wiley +1 more source
Shear stress rosettes capture the complex flow physics in diseased arteries [PDF]
C. Vamsi Krishna+4 more
openalex +1 more source
Exact Analytical Solution for Large-Amplitude Oscillatory Shear Flow
When polymeric liquids undergo large-amplitude shearing oscillations, the shear stress responds as a Fourier series, the higher harmonics of which are caused by fluid nonlinearity.
C. Saengow+3 more
semanticscholar +1 more source
Toughness of Confined Auxetic Foams
Auxetic (negative Poisson's ratio) materials offer benefits such as impact mitigation, thermal insulation, vibration damping, and reduced shear strain, although their fracture mechanics are largely unexplored. This study investigates damage initiation and propagation in confined re‐entrant auxetic foams from polyurethane via experimental ...
Adrianos E. F. Athanasiadis+3 more
wiley +1 more source
From phase locking to phase slips: a mechanism for a quiescent H mode.
We demonstrate that E×B shear, V_{E×B}^{'}, governs the dynamics of the cross phase of the peeling-ballooning-(PB-)mode-driven heat flux, and so determines the evolution from the edge-localized (ELMy) H mode to the quiescent (Q) H mode.
Z. B. Guo, P. Diamond
semanticscholar +1 more source
This study presents a multimodal characterization method for a prototype metamaterial model structure that features four distinct states of mechanical stiffness and electrical resistivity. Through simulations and experiments, it uncovers insights into the structural behavior, the correlation between changes in electrical resistivity and mechanical ...
Rebecca Kose+3 more
wiley +1 more source
Key Trends and Insights in Smart Polymeric Skin Wearable Patches
Intelligent polymers, which respond to various physical and biological stimuli, are explored for the development of skin wearable patches in biomedical applications. Smart polymers, also known as intelligent or stimuli‐responsive polymers, play a crucial role in the development of advanced wearable patches due to their versatility and softness.
Sergio J. Peñas‐Núñez+2 more
wiley +1 more source
Ultrahigh Piezoelectricity in Truss‐Based Ferroelectric Ceramics Metamaterials
By leveraging the unique combination of polarization direction and loading state, ultrahigh piezoelectricity is achieved through careful tuning of the relative density and scaling ratio in truss‐based ferroelectric metamaterials. This approach enables the simultaneous realization of extremely high piezoelectric constants and ultralow dielectric ...
Jiahao Shi+6 more
wiley +1 more source
3D Printed Ultra‐Fast Plastic Scintillators Based on Perovskite‐Photocurable Polymer Composite
The demand for radiation detection is increasing in a number of fields, including high‐energy physics, medical imaging, and homeland security. This study serves to demonstrate the potential for the fabrication of fast perovskite‐based scintillators with complex shapes via stereolithographic additive manufacturing, representing a new path toward the ...
Antonella Giuri+16 more
wiley +1 more source