Results 251 to 260 of about 5,135,860 (329)

Transition Metal Compounds for Aqueous Ammonium‐Ion Batteries: Storage Mechanisms and Electrode Design

open access: yesAdvanced Science, EarlyView.
Aqueous ammonium‐ion batteries leverage hydrogen‐bond‐mediated NH4+ storage in tunable transition metal compounds. Despite progress in Mn‐, V‐, Mo‐, and W‐based compounds, 2D LDHs, and MXenes, challenges like structural instability and slow kinetics persist. Future advances require robust host design, mechanistic understanding via operando studies, and
Can Li   +6 more
wiley   +1 more source

Enhanced Energy Harvesting Performance of Biodegradable Polylactic Acid/3D Anodic Aluminum Oxide Composite Triboelectric Nanogenerators

open access: yesAdvanced Electronic Materials, EarlyView.
Polylactic acid (PLA) embedded in 3D anodic aluminum oxide (3D‐AAO) yields triboelectric nanogenerators (TENGs) with ɛeff = 5.1, delivering 20V and 108µW both per cm2. These agglomeration‐resistant, compostable/biocompatible devices retain 95% output after 104 cycles, enabling robust self‐powered Internet of Things (IoT) sensing.
Carlos G. Cobos   +5 more
wiley   +1 more source

XHEMTs on Ultrawide Bandgap Single‐Crystal AlN Substrates

open access: yesAdvanced Electronic Materials, EarlyView.
AlN/GaN/AlN XHEMTs [single‐crystal (“X‐tal”) high‐electron‐mobility transistors] are built on bulk AlN substrates with a 20 nm pseudomorphic GaN channel. This coherent epitaxial double heterostructure promises low‐defect, thermally efficient nitride electronics for next‐generation RF technology.
Eungkyun Kim   +6 more
wiley   +1 more source

Ethical and Frugal Approaches to Animal Experimentation in Bioelectronics and Neural Engineering—An Invertebrate Renaissance?

open access: yesAdvanced Electronic Materials, EarlyView.
Invertebrates are the classic neuroscience models and should make a comeback. Invertebrate organisms can be a more ethical and cost‐effective way to move bioelectronics research forward more rapidly. ABSTRACT The accelerating development of bioelectronic neural interfaces has brought increased attention to ethical considerations surrounding in vivo ...
Eric Daniel Głowacki
wiley   +1 more source

Is There A Pure Electronic Ferroelectric?

open access: yesAdvanced Electronic Materials, EarlyView.
The search for faster, more reliable ferroelectric materials has shifted from traditional lattice‐driven ferroelectrics, which rely on slow ionic displacements, to electronic ferroelectrics, where polarization is governed by electronic ordering. This shift enables ultrafast switching, low‐field operation, and resistance to fatigue.
Xudong Wang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy