Results 161 to 170 of about 25,682 (291)

Domain‐Wall‐Free Sliding Ferroelectricity in Fully Commensurate 3R Transition Metal Dichalcogenide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
It is reported that the ferroelectric switching behavior of rhombohedral (3R) phase transition metal dichalcogenide (TMD) bilayers strongly depends on their domain structures. Single‐domain TMDs (SD‐TMDs) with domain‐wall‐free structures exhibit robust and stable polarization switching, whereas poly‐domain TMDs (PD‐TMDs) with randomly distributed ...
Ji‐Hwan Baek   +8 more
wiley   +1 more source

Single Solid‐State Ion Channels as Potentiometric Nanosensors

open access: yesAdvanced Functional Materials, EarlyView.
Single gold nanopores functionalized with mixed self‐assembled monolayers act as solid‐state ion channels for direct, selective potentiometric sensing of inorganic ions (Ag⁺). The design overcomes key miniaturization barriers of conventional ion‐selective electrodes by combining low resistivity with suppressed loss of active components, enabling robust
Gergely T. Solymosi   +4 more
wiley   +1 more source

Atomically Revealing Bulk Point Defect Dynamics in Hydrogen‐Driven γ‐Fe2O3 → Fe3O4 → FeO Transformation

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu   +14 more
wiley   +1 more source

Digital Discovery of Synthesizable Metal−Organic Frameworks via Molecular Dynamics‑Informed, High‑Fidelity Deep Learning

open access: yesAdvanced Functional Materials, EarlyView.
Tabular foundation model interrogates the synthetic likelihood of metal−organic frameworks. Abstract Metal–organic frameworks (MOFs) are celebrated for their chemical and structural versatility, and in‑silico screening has significantly accelerated their discovery; yet most hypothetical MOFs (hMOFs) never reach the bench because their synthetic ...
Xiaoyu Wu   +3 more
wiley   +1 more source

Colloidal Crack Sintering Lithography for Light‐Induced Patterning of Particle Assemblies

open access: yesAdvanced Functional Materials, EarlyView.
Colloidal crack sintering lithography (CCSL) is a microfabrication technique that uses light‐induced photothermal heating to trigger sintering and controlled cracking in polymer colloidal assemblies. Local structural changes generate microchannels and patterns, enabling direct writing of diverse topographic motifs.
Marius Schoettle   +2 more
wiley   +1 more source

Multimodal Structural Color Graphics Based on Colloidal Photonic Microdome Arrays

open access: yesAdvanced Functional Materials, EarlyView.
A hybrid photonic system combining colloidal crystals and microscale domes is designed to achieve four switchable optical states via the interplay of Bragg reflection and TIR interference. The graphics composed of the photonic microdome arrays provide tunable, angle‐sensitive structural coloration and concealed‐to‐revealed transitions, offering a ...
Jun‐Gu Kang   +4 more
wiley   +1 more source

Shape‐Morphing Nanoengineered Hydrogel Ribbons as Hemostats

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a self‐assembling, shape‐morphing nanoengineered hydrogel ribbon system that rapidly forms porous aggregates in situ for efficient hemostasis in trauma and surgical applications. Abstract Rapid and effective hemorrhage control remains a major challenge in trauma and surgical care, particularly for complex or noncompressible wounds.
Ryan Davis Jr   +9 more
wiley   +1 more source

Home - About - Disclaimer - Privacy