Results 221 to 230 of about 217,698 (308)
A sequential deep learning framework is developed to model surface roughness progression in multi‐stage microneedle fabrication. Using real‐world experimental data from 3D printing, molding, and casting stages, an long short‐term memory‐based recurrent neural network captures the cumulative influence of geometric parameters and intermediate outputs ...
Abdollah Ahmadpour +5 more
wiley +1 more source
Breast Cancer Data Analysis Using Supervised Machine Learning Algorithms. [PDF]
Kutal DH, Koseoglu BN.
europepmc +1 more source
This work introduces a novel framework for identifying non‐small cell lung cancer biomarkers from hundreds of volatile organic compounds in breath, analyzed via gas chromatography‐mass spectrometry. This method integrates generative data augmentation and multi‐view feature selection, providing a stable and accurate solution for biomarker discovery in ...
Guancheng Ren +10 more
wiley +1 more source
Predicting system dynamics of pervasive growth patterns in complex systems. [PDF]
Hedayatifar L +10 more
europepmc +1 more source
About rectified sigmoid function for enhancing the accuracy of Physics-Informed Neural Networks [PDF]
Vasiliy A. Es’kin +2 more
openalex +1 more source
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas +4 more
wiley +1 more source
Towards accurate penetration depth estimation in near-infrared spectroscopy: a quantitative analysis of source-detector distance dependence in porcine kidney models. [PDF]
Khurana AS +3 more
europepmc +1 more source
Solving Data Overlapping Problem Using A Class‐Separable Extreme Learning Machine Auto‐Encoder
The overlapping and imbalanced data in classification present key challenges. Class‐separable extreme learning machine auto‐encoding (CS‐ELM‐AE) is proposed, which is an enhancement of ELM‐AE that better handles overlapping data by clustering points from the same class together. Applying oversampling addresses imbalanced data.
Ekkarat Boonchieng, Wanchaloem Nadda
wiley +1 more source

