Results 81 to 90 of about 63,846 (213)
Locating Eigenvalues of a Symmetric Matrix whose Graph is Unicyclic
We present a linear-time algorithm that computes in a given real interval the number of eigenvalues of any symmetric matrix whose underlying graph is unicyclic.
R. O. Braga +2 more
doaj +1 more source
The Largest Laplacian and Signless Laplacian H-Eigenvalues of a Uniform Hypergraph [PDF]
In this paper, we show that the largest Laplacian H-eigenvalue of a $k$-uniform nontrivial hypergraph is strictly larger than the maximum degree when $k$ is even. A tight lower bound for this eigenvalue is given.
Hu, Shenglong, Qi, Liqun, Xie, Jinshan
core
Let $\mathcal{A(}G\mathcal{)},\mathcal{L(}G\mathcal{)}$ and $\mathcal{Q(}% G\mathcal{)}$ be the adjacency tensor, Laplacian tensor and signless Laplacian tensor of uniform hypergraph $G$, respectively.
Qi, Liqun, Shao, Jiayu, Yuan, Xiying
core +1 more source
Signless laplacian spectral characterization of roses
A p-rose graph Γ = RG(a3, a4, . . . , as) is a graph consisting of p =a3 + a4 + · · · + as ≥ 2 cycles that all meet in one vertex, and ai (3 ≤ i ≤ s) is the number of cycles in Γ of length i. A graph G is said to be DLS (resp., DQS) if it is determined by the spectrum of its Laplacian (resp. signless Laplacian) matrix, i. e.
Brunetti M, Ashrafi A R, Abdian A Z
openaire +2 more sources
Abstract Landscape functions are a popular tool used to provide upper bounds for eigenvectors of Schrödinger operators on domains. We review some known results obtained in the last 10 years, unify several approaches used to achieve such bounds, and extend their scope to a large class of linear and nonlinear operators. We also use landscape functions to
Delio Mugnolo
wiley +1 more source
The least eigenvalue of signless Laplacian of non-bipartite graphs with given domination number
Let $G$ be a connected non-bipartite graph on $n$ vertices with domination number $\gamma \le \frac{n+1}{3}$. We investigate the least eigenvalue of the signless Laplacian of $G$, and present a lower bound for such eigenvalue in terms of the domination ...
Fan, Yi-Zheng, Tan, Ying-Ying
core +1 more source
Distance (Signless) Laplacian Eigenvalues of $k$-uniform Hypergraphs
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Liu, Xiangxiang, Wang, Ligong
openaire +1 more source
Distance Spectra of Some Double Join Operations of Graphs
In literature, several types of join operations of two graphs based on subdivision graph, Q‐graph, R‐graph, and total graph have been introduced, and their spectral properties have been studied. In this paper, we introduce a new double join operation based on (H1, H2)‐merged subdivision graph.
B. J. Manjunatha +4 more
wiley +1 more source
Spectra of Graphs Resulting from Various Graph Operations and Products: a Survey
Let G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and ...
Barik S., Kalita D., Pati S., Sahoo G.
doaj +1 more source
A graph is said to be borderenergetic (-borderenergetic, respectively) if its energy (Laplacian energy, respectively) equals the energy (Laplacian energy, respectively) of the complete graph .
Qingyun Tao, Yaoping Hou
doaj +1 more source

