Results 51 to 60 of about 1,304 (147)
Some upper bounds for the signless Laplacian spectral radius of digraphs [PDF]
Let $G=(V(G),E(G))$ be a digraph without loops and multiarcs, where $V(G)=\{v_1,v_2,$ $\ldots,v_n\}$ and $E(G)$ are the vertex set and the arc set of $G$, respectively. Let $d_i^{+}$ be the outdegree of the vertex $v_i$.
Weige Xi, Ligong Wang
doaj +1 more source
Construction for the Sequences of Q‐Borderenergetic Graphs
This research intends to construct a signless Laplacian spectrum of the complement of any k‐regular graph G with order n. Through application of the join of two arbitrary graphs, a new class of Q‐borderenergetic graphs is determined with proof. As indicated in the research, with a regular Q‐borderenergetic graph, sequences of regular Q‐borderenergetic ...
Bo Deng +4 more
wiley +1 more source
Aα‐Spectral Characterizations of Some Joins
Let G be a graph with n vertices. For every real α ∈ [0,1], write Aα(G) for the matrix Aα(G) = αD(G) + (1 − α)A(G), where A(G) and D(G) denote the adjacency matrix and the degree matrix of G, respectively. The collection of eigenvalues of Aα(G) together with multiplicities are called the Aα‐spectrum of G.
Tingzeng Wu, Tian Zhou, Naihuan Jing
wiley +1 more source
On the Second-Largest Reciprocal Distance Signless Laplacian Eigenvalue
The signless Laplacian reciprocal distance matrix for a simple connected graph G is defined as RQ(G)=diag(RH(G))+RD(G). Here, RD(G) is the Harary matrix (also called reciprocal distance matrix) while diag(RH(G)) represents the diagonal matrix of the ...
Maryam Baghipur +3 more
doaj +1 more source
Bounds on the α‐Distance Energy and α‐Distance Estrada Index of Graphs
Let G be a simple undirected connected graph, then Dα(G) = αTr(G) + (1 − α)D(G) is called the α‐distance matrix of G, where α ∈ [0,1], D(G) is the distance matrix of G, and Tr(G) is the vertex transmission diagonal matrix of G. In this paper, we study some bounds on the α‐distance energy and α‐distance Estrada index of G.
Yang Yang +3 more
wiley +1 more source
On the Adjacency, Laplacian, and Signless Laplacian Spectrum of Coalescence of Complete Graphs
Coalescence as one of the operations on a pair of graphs is significant due to its simple form of chromatic polynomial. The adjacency matrix, Laplacian matrix, and signless Laplacian matrix are common matrices usually considered for discussion under ...
S. R. Jog, Raju Kotambari
doaj +1 more source
Spectra of Graphs Resulting from Various Graph Operations and Products: a Survey
Let G be a graph on n vertices and A(G), L(G), and |L|(G) be the adjacency matrix, Laplacian matrix and signless Laplacian matrix of G, respectively. The paper is essentially a survey of known results about the spectra of the adjacency, Laplacian and ...
Barik S., Kalita D., Pati S., Sahoo G.
doaj +1 more source
$ A_{\alpha} $ matrix of commuting graphs of non-abelian groups
For a finite group $ \mathcal{G} $ and a subset $ X\neq \emptyset $ of $ \mathcal{G} $, the commuting graph, indicated by $ G = \mathcal{C}(\mathcal{G}, X) $, is the simple connected graph with vertex set $ X $ and two distinct vertices $ x $ and $ y $
Bilal A. Rather +5 more
doaj +1 more source
On the sum of signless Laplacian spectra of graphs
For a simple graph $G(V,E)$ with $n$ vertices, $m$ edges, vertex set $V(G)=\{v_1, v_2, \dots, v_n\}$ and edge set $E(G)=\{e_1, e_2,\dots, e_m\}$, the adjacency matrix $A=(a_{ij})$ of $G$ is a $(0, 1)$-square matrix of order $n$ whose $(i,j)$-entry is ...
S. Pirzada, H.A. Ganie, A.M. Alghamdi
doaj +1 more source
Laplacian and signless laplacian spectra and energies of multi-step wheels
Energies and spectrum of graphs associated to different linear operators play a significant role in molecular chemistry, polymerisation, pharmacy, computer networking and communication systems.
Zheng-Qing Chu +4 more
doaj +1 more source

