On the spectral radius and energy of signless Laplacian matrix of digraphs [PDF]
Let D be a digraph of order n and with a arcs. The signless Laplacian matrix Q(D) of D is defined as Q(D)=Deg(D)+A(D), where A(D) is the adjacency matrix and Deg(D) is the diagonal matrix of vertex out-degrees of D.
Hilal A. Ganie, Yilun Shang
doaj +2 more sources
Some sufficient conditions on hamilton graphs with toughness [PDF]
Let G be a graph, and the number of components of G is denoted by c(G). Let t be a positive real number. A connected graph G is t-tough if tc(G − S) ≤ |S| for every vertex cut S of V(G). The toughness of G is the largest value of t for which G is t-tough,
Gaixiang Cai +4 more
doaj +2 more sources
On the Signless Laplacian Spectral Radius of Bicyclic Graphs with Perfect Matchings [PDF]
The graph with the largest signless Laplacian spectral radius among all bicyclic graphs with perfect matchings is determined.
Jing-Ming Zhang +2 more
doaj +2 more sources
Some new sharp bounds for the spectral radius of a nonnegative matrix and its application [PDF]
In this paper, we give some new sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. Using these bounds, we obtain some new and improved bounds for the signless Laplacian spectral radius of a graph or a digraph.
Jun He +3 more
doaj +2 more sources
NEW BOUNDS AND EXTREMAL GRAPHS FOR DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS [PDF]
The distance signless Laplacian spectral radius of a connected graph $G$ is the largest eigenvalue of the distance signless Laplacian matrix of $G$, defined as $D^{Q}(G)=Tr(G)+D(G)$, where $D(G)$ is the distance matrix of $G$ and $Tr(G)$ is the diagonal ...
A. Alhevaz, M. Baghipur, S. Paul
doaj +1 more source
Chromatic number and signless Laplacian spectral radius of graphs [PDF]
For any simple graph $G$, the signless Laplacian matrix of $G$ is defined as $D(G)+A(G)$, where $D(G)$ and $A(G)$ are the diagonal matrix of vertex degrees and the adjacency matrix of $G$, respectively.
Mohammad Reza Oboudi
doaj +1 more source
On the Signless Laplacian Spectral Radius of Graphs without Small Books and Intersecting Quadrangles
In this paper, we determine the maximum signless Laplacian spectral radius of all graphs which do not contain small books as a subgraph and characterize all extremal graphs. In addition, we give an upper bound of the signless Laplacian spectral radius of
Ming-Zhu Chen +3 more
doaj +1 more source
Some inequalities involving the distance signless Laplacian eigenvalues of graphs [PDF]
Given a simple graph $G$, the distance signlesss Laplacian $D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix $Tr(G)$ and distance matrix $D(G)$.
Abdollah Alhevaz +3 more
doaj +1 more source
On Distance Signless Laplacian Spectral Radius and Distance Signless Laplacian Energy
In this article, we find sharp lower bounds for the spectral radius of the distance signless Laplacian matrix of a simple undirected connected graph and we apply these results to obtain sharp upper bounds for the distance signless Laplacian energy graph.
Luis Medina, Hans Nina, Macarena Trigo
doaj +1 more source
Spectral Sufficient Conditions on Pancyclic Graphs
A pancyclic graph of order n is a graph with cycles of all possible lengths from 3 to n. In fact, it is NP-complete that deciding whether a graph is pancyclic.
Guidong Yu +3 more
doaj +1 more source

