Results 31 to 40 of about 306 (150)
Some Chemistry Indices of Clique‐Inserted Graph of a Strongly Regular Graph
In this paper, we give the relation between the spectrum of strongly regular graph and its clique‐inserted graph. The Laplacian spectrum and the signless Laplacian spectrum of clique‐inserted graph of strongly regular graph are calculated. We also give formulae expressing the energy, Kirchoff index, and the number of spanning trees of clique‐inserted ...
Chun-Li Kan +4 more
wiley +1 more source
Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs [PDF]
The author gives sharp lower and upper bounds for the ratio of adjacency spectral radius and the clique number and the ratio of signless Laplacian spectral radius and the clique number, together with characterisation of extremal graphs. These results prove a conjecture from [\textit{M.
Das, Kinkar Ch., Liu, Muhuo
openaire +1 more source
The Randić index and signless Laplacian spectral radius of graphs [PDF]
Given a connected graph $G$, the Randi index $R(G)$ is the sum of $\tfrac{1}{\sqrt{d(u)d(v)}}$ over all edges $\{u,v\}$ of $G$, where $d(u)$ and $d(v)$ are the degree of vertices $u$ and $v$ respectively. Let $q(G)$ be the largest eigenvalue of the singless Laplacian matrix of $G$ and $n=|V(G)|$. Hansen and Lucas (2010) made the following conjecture:
Bo Ning, Xing Peng
openaire +3 more sources
Some inequalities involving the distance signless Laplacian eigenvalues of graphs [PDF]
Given a simple graph $G$, the distance signlesss Laplacian $D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix $Tr(G)$ and distance matrix $D(G)$.
Abdollah Alhevaz +3 more
doaj +1 more source
In this paper, we obtain a sharp upper bound on the spectral radius of a nonnegative k-uniform tensor and characterize when this bound is achieved. Furthermore, this result deduces the main result in [X. Duan and B.
Chuang Lv, Lihua You, Xiao-Dong Zhang
doaj +1 more source
Some upper bounds for the signless Laplacian spectral radius of digraphs [PDF]
Let $G=(V(G),E(G))$ be a digraph without loops and multiarcs, where $V(G)=\{v_1,v_2,$ $\ldots,v_n\}$ and $E(G)$ are the vertex set and the arc set of $G$, respectively. Let $d_i^{+}$ be the outdegree of the vertex $v_i$.
Weige Xi, Ligong Wang
doaj +1 more source
Bounds on the α‐Distance Energy and α‐Distance Estrada Index of Graphs
Let G be a simple undirected connected graph, then Dα(G) = αTr(G) + (1 − α)D(G) is called the α‐distance matrix of G, where α ∈ [0,1], D(G) is the distance matrix of G, and Tr(G) is the vertex transmission diagonal matrix of G. In this paper, we study some bounds on the α‐distance energy and α‐distance Estrada index of G.
Yang Yang +3 more
wiley +1 more source
Some spectral sufficient conditions for a graph being pancyclic
Let $G(V,E)$ be a simple connected graph of order $n$. A graph of order $n$ is called pancyclic if it contains all the cycles $C_k$ for $k\in \{3,4,\cdot\cdot\cdot,n\}$. In this paper, some new spectral sufficient conditions for the graph to be pancyclic
Huan Xu +5 more
doaj +1 more source
Graphs with maximal signless Laplacian spectral radius
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Chang, Ting-Jung, Tam, Bit-Shun
openaire +2 more sources
On distance signless Laplacian spectrum and energy of graphs
The distance signless Laplacian spectral radius of a connected graph G is the largest eigenvalue of the distance signless Laplacian matrix of G, defined as DQ(G) = Tr(G) + D(G), where D(G) is the distance matrix of G and Tr(G) is the diagonal ...
Abdollah Alhevaz +2 more
doaj +1 more source

