Results 271 to 280 of about 169,317 (336)

Intrinsic Nanopore‐Assisted SnP2S6 Memristors With Ti Ion Dynamics for Compact Logic‐In‐Memory Hardware

open access: yesAdvanced Functional Materials, EarlyView.
Tin hexathiophosphate memristors leverage intrinsic nanopores together with a guided filament formation strategy to regulate titanium ion motion and switching behavior. The devices support reliable nonvolatile memory and reconfigurable logic‐in‐memory, demonstrating 14 Boolean logic functions in a single cell.
Thaw Tint Te Tun   +7 more
wiley   +1 more source

MagPiezo: A Magnetogenetic Platform for Remote Activation of Endogenous Piezo1 Channels in Endothelial Cells

open access: yesAdvanced Functional Materials, EarlyView.
MagPiezo enables wireless activation of endogenous Piezo1 channels without genetic modification using 19 nm magnetic nanoparticles and low‐intensity magnetic fields. It generates torque forces at the piconewton scale to trigger mechanotransduction in endothelial cells, standing as a novel platform to interrogate and manipulate Piezo1 activity in vitro.
Susel Del Sol‐Fernández   +7 more
wiley   +1 more source

Electrocatalytic Reduction of CO2 to Ethylene: Catalyst Design and Synchrotron‐Based Characterizations

open access: yesAdvanced Functional Materials, EarlyView.
This review evaluates strategies for electrochemical CO2 reduction to ethylene, focusing on copper‐based catalyst design and microenvironment modulation to achieve industrial‐grade performance. By leveraging operando synchrotron‐based characterizations, we provide a multiscale understanding of dynamic structural transformations and key reaction ...
Meng Zhang, Zuolong Chen, Yimin A. Wu
wiley   +1 more source

Efficient Charge Transport in Zero‐Dimensional Perovskite for Ultrahigh‐Sensitivity X‐Ray Detection

open access: yesAdvanced Functional Materials, EarlyView.
A novel mono‐octahedral 0D Bi‐based Dpy3Bi2I12 perovskite strengthens the internal hydrogen bonds and forms a quasi‐2D lattice, exhibits exceptional charge transport and mobility, achieving high X‐ray sensitivity and ultralow‐dose imaging, and setting a new benchmark for 0D detector performance.
Xin Song   +16 more
wiley   +1 more source

Effects of Molecular Designs and Double‐Network Morphologies for Bioadhesive Semiconductors

open access: yesAdvanced Functional Materials, EarlyView.
This study establishes molecular‐to‐mesoscale design rules for bioadhesive semiconducting polymers (BASCs). It identifies how side‐chain length, double‐network formation, and film thickness modulate adhesion strength and electronic performance, providing insight into the rational design of intrinsically adhesive semiconductors for stable and efficient ...
Zhichang Liu   +8 more
wiley   +1 more source

Molecularly Engineered Highly Stable Memristors with Ultra‐Low Operational Voltage: Integrating Synthetic DNA with Quasi‐2D Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
Molecularly engineered memristors integrating Ag nanoparticle–embedded synthetic DNA with quasi‐2D halide perovskites enable ultra‐low‐operational voltage, forming‐free resistive switching, and record‐low power density. This synergistic integration of customized DNA and 2D OHP in bio‐hybrid architecture enhances charge transport, reduces variability ...
Kavya S. Keremane   +9 more
wiley   +1 more source

Voltage‐Gated Dedoping of n‐Doped Poly(benzodifurandione) as an Interfacial Protective Mechanism in Electrochromic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Electrochromic polymer stability under overpotential is improved by inserting an ultrathin, transparent n‐doped poly(benzodifurandione) interlayer between indium tin oxide and a poly(3,4‐propylenedioxythiophene)‐based electrochromic polymer. The interlayer supports rapid switching at operating bias, then becomes resistive near +0.8 V to suppress excess
Priyanka Rout   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy