Results 291 to 300 of about 6,532,487 (336)
Some of the next articles are maybe not open access.
Bulletin of the Australian Mathematical Society, 2020
AbstractA finite group whose irreducible complex characters are rational-valued is called a rational group. The aim of this paper is to determine the rational almost simple and rational quasi-simple groups.
FARIDEH SHAFIEI +2 more
openaire +2 more sources
AbstractA finite group whose irreducible complex characters are rational-valued is called a rational group. The aim of this paper is to determine the rational almost simple and rational quasi-simple groups.
FARIDEH SHAFIEI +2 more
openaire +2 more sources
Scientific American, 2008
The article discusses group theory as it relates to puzzles like Rubik's Cube, which is based on permutation groups, and other types of puzzles the authors invented, based on other sporadic simple groups, including Mathieu groups. Strategies for solving these puzzles are discussed, with sidebars discussing and illustrating group theory.
Igor, Kriz, Paul, Siegel
openaire +2 more sources
The article discusses group theory as it relates to puzzles like Rubik's Cube, which is based on permutation groups, and other types of puzzles the authors invented, based on other sporadic simple groups, including Mathieu groups. Strategies for solving these puzzles are discussed, with sidebars discussing and illustrating group theory.
Igor, Kriz, Paul, Siegel
openaire +2 more sources
Canadian Journal of Mathematics, 1978
An index four simple group is a finite simple group, G, with a self-centralizing Sylow p-subgroup whose normalizer in G has order 4p. In this paper index four simple groups having a non-principal ordinary irreducible character of small degree in the ...
Alex, Leo J., Morrow, Dean C.
openaire +2 more sources
An index four simple group is a finite simple group, G, with a self-centralizing Sylow p-subgroup whose normalizer in G has order 4p. In this paper index four simple groups having a non-principal ordinary irreducible character of small degree in the ...
Alex, Leo J., Morrow, Dean C.
openaire +2 more sources
Shunkov Groups Saturated with Almost Simple Groups
Algebra and Logic, 2023A group \(G\) is a Shunkov group if whenever \(H\) is a finite subgroup of \(G\) any two conjugate elements of prime order in the group \(N_G(H)/H\) generate a finite subgroup. The class of such groups forms a generalization of the class of locally finite groups.
Maslova, N. V., Shlepkin, A. A.
openaire +1 more source
Canadian Journal of Mathematics, 1962
The list of known finite simple groups other than the cyclic, alternating, and Mathieu groups consists of the classical groups which are (projective) unimodular, orthogonal, symplectic, and unitary groups, the exceptional groups which are the direct analogues of the exceptional Lie groups, and certain twisted types which are constructed with the aid of
openaire +2 more sources
The list of known finite simple groups other than the cyclic, alternating, and Mathieu groups consists of the classical groups which are (projective) unimodular, orthogonal, symplectic, and unitary groups, the exceptional groups which are the direct analogues of the exceptional Lie groups, and certain twisted types which are constructed with the aid of
openaire +2 more sources
SIMPLE ALMOST HYPERDEFINABLE GROUPS
Journal of Mathematical Logic, 2006(i) We lay down the groundwork for the treatment of almost hyperdefinable groups: notions from [5] are put into a natural hierarchy, and new notions, essential to the study to such groups, fit elegantly into this hierarchy. (ii) We show that "classical" properties of definable and hyperdefinable groups in simple theories can be generalised to this ...
openaire +1 more source
A characteristically simple group
Mathematical Proceedings of the Cambridge Philosophical Society, 1954The object of this note is to give an example of an infinite locally finite p-group which has no proper characteristic subgroup except the unit group. (A group G is a locally finite p-group if every finite set of elements of G generates a subgroup of finite order equal to a power of the prime p.) It is known that an infinite locally finite p-group ...
openaire +2 more sources
Journal of the London Mathematical Society, 1995
A group \(G\) is called pseudofinite if it is an infinite model of the first-order theory of finite groups. The study of these groups was begun in 1988 by the reviewer who realized, that a classification of all simple pseudofinite groups might be possible.
openaire +2 more sources
A group \(G\) is called pseudofinite if it is an infinite model of the first-order theory of finite groups. The study of these groups was begun in 1988 by the reviewer who realized, that a classification of all simple pseudofinite groups might be possible.
openaire +2 more sources
Groups saturated by finite simple groups
Algebra and Logic, 2009zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire +1 more source
The American Mathematical Monthly, 1977
(1977). Finite Simple Groups. The American Mathematical Monthly: Vol. 84, No. 9, pp. 693-714.
James F. Hurley, Arunas Rudvalis
openaire +1 more source
(1977). Finite Simple Groups. The American Mathematical Monthly: Vol. 84, No. 9, pp. 693-714.
James F. Hurley, Arunas Rudvalis
openaire +1 more source

