Results 281 to 290 of about 627,768 (311)
A visible light‐responsive polyacrylamide‐azobenzene hydrogel enables safe, reversible stiffness control for studying cell mechanobiology without harmful UV exposure. This approach reveals stem cells respond rapidly to mechanical changes, showing altered shape and protein distribution within one hour.
Aafreen Ansari+11 more
wiley +1 more source
Near-Horizon Carnot Engines Beyond Schwarzschild: Exploring Black Brane Thermodynamics. [PDF]
Mertens L, van Wezel J.
europepmc +1 more source
A copper‐induced atom ordering strategy is developed for the reconstruction of raw commercial Pt catalyst into ordered PtFeCu intermetallic compounds for hydrogen fuel cells. Abstract Carbon‐supported platinum intermetallic compound nanoparticles are seen as the next‐generation cathodic catalysts for hydrogen fuel cells due to their high activity and ...
Yan Nie+9 more
wiley +1 more source
On the Change of Measure for Brownian Processes. [PDF]
Pinski FJ.
europepmc +1 more source
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan+9 more
wiley +1 more source
Modeling and computational study of cancer treatment with radiotherapy using real data. [PDF]
Naik PA+5 more
europepmc +1 more source
A bioengineered skin equivalent composed of electrospun poly(ε‐caprolactone) (PCL) and the bioactive peptide Fmoc‐FRGD is developed for severe burn treatment. This scaffold promotes full‐thickness skin regeneration by supporting cellular adhesion and integration. In‐vitro and in‐vivo studies show enhanced mechanical stability, accelerated wound closure,
Dana Cohen‐Gerassi+11 more
wiley +1 more source
Scattering integral equation formulation for intravascular inclusion biosensing. [PDF]
Valagiannopoulos C, Tosi D.
europepmc +1 more source
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho+11 more
wiley +1 more source