Results 211 to 220 of about 174,051 (288)

Gait Analysis of Pak Biawak: A Necrobot Lizard Built using the Skeleton of an Asian Water Monitor (Varanus Salvator)

open access: yesAdvanced Robotics Research, EarlyView.
Pak Biawak, a necrobot, embodies an unusual fusion of biology and robotics. Designed to repurpose natural structures after death, it challenges conventional boundaries between nature and engineering. Its movements are precise yet unsettling, raising questions about sustainability, ethics, and the untapped potential of biointegrated machines.
Leo Foulds   +2 more
wiley   +1 more source

Waveguide Photoactuators: Materials, Fabrication, and Applications

open access: yesAdvanced Robotics Research, EarlyView.
Waveguide photoactuators convert guided light into mechanical motion. Their tethered‐flexible design enables minimally invasive surgery and confined‐space robotics. This review aims to guide materials selection, device design, and system integration, accelerating the transition of waveguide photoactuators from laboratory prototypes to versatile ...
Minjie Xi   +4 more
wiley   +1 more source

PDMS SlipChip: Optimizing Sealing, Slipping, and Biocompatibility Using Low-Viscosity Silicone Oils. [PDF]

open access: yesMicromachines (Basel)
Inaam R   +5 more
europepmc   +1 more source

ChicGrasp: Imitation‐Learning‐Based Customized Dual‐Jaw Gripper Control for Manipulation of Delicate, Irregular Bio‐Products

open access: yesAdvanced Robotics Research, EarlyView.
Automated poultry processing lines still rely on humans to lift slippery, easily bruised carcasses onto a shackle conveyor. Deformability, anatomical variance, and hygiene rules make conventional suction and scripted motions unreliable. We present ChicGrasp, an end‐to‐end hardware‐software co‐designed imitation learning framework, to offer a ...
Amirreza Davar   +8 more
wiley   +1 more source

Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion

open access: yesAdvanced Robotics Research, EarlyView.
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza   +3 more
wiley   +1 more source

Data‐Driven Bulldozer Blade Control for Autonomous Terrain Leveling

open access: yesAdvanced Robotics Research, EarlyView.
A simulation‐driven framework for autonomous bulldozer leveling is presented, combining high‐fidelity terramechanics simulation with a neural‐network‐based reduced‐order model. Gradient‐based optimization enables efficient, low‐level blade control that balances leveling quality and operation time.
Harry Zhang   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy