Results 51 to 60 of about 85,041 (264)
Compactness of higher-order Sobolev embeddings [PDF]
We study higher-order compact Sobolev embeddings on a domain $\Omega \subseteq \mathbb R^n$ endowed with a probability measure $\nu$ and satisfying certain isoperimetric inequality.
Slavíková, Lenka
core
Weighted Sobolev Spaces on Curves
45 pages, no figures.-- MSC1987 codes: 41A10, 46E35, 46G10.
Elena Romera +3 more
openaire +4 more sources
Diffusive Resource–Consumer Dynamics With the Simplest Learning Mechanism and Nonlocal Memory Usage
ABSTRACT To describe cognitive consumers' movement, we study a diffusive resource–consumer model with nonlocal memory usage described by a system of parabolic equations, which is coupled with spatial memory dynamics described by a linear learning equation.
Qigang Deng, Ranchao Wu, Hao Wang
wiley +1 more source
Sobolev Embedding Theorem for the Sobolev-Morrey spaces
In this paper we prove a Sobolev Embedding Theorem for Sobolev-Morrey spaces. The proof is based on the Sobolev Integral Representation Theorem and on a recent results on Riesz potentials in generalized Morrey spaces of Burenkov, Gogatishvili, Guliyev ...
V.I. Burenkov, N.A. Kydyrmina
doaj
A density result for homogeneous Sobolev spaces on planar domains
We show that in a bounded simply connected planar domain $\Omega$ the smooth Sobolev functions $W^{k,\infty}(\Omega)\cap C^\infty(\Omega)$ are dense in the homogeneous Sobolev spaces $L^{k,p}(\Omega)$.Comment: 17 pages, 4 ...
Nandi, Debanjan +2 more
core +1 more source
Abstract Boundary Delay Systems and Application to Network Flow
ABSTRACT This paper investigates the well‐posedness and positivity of solutions to a class of delayed transport equations on a network. The material flow is delayed at the vertices and along the edges. The problem is reformulated as an abstract boundary delay equation, and well‐posedness is proved by using the Staffans–Weiss theory.
András Bátkai +2 more
wiley +1 more source
Trace principle for Riesz potentials on Herz-type spaces and applications
We establish trace inequalities for Riesz potentials on Herz-type spaces and examine the optimality of conditions imposed on specific parameters.
M. Ashraf Bhat, G. Sankara Raju Kosuru
doaj +1 more source
On the constants for multiplication in Sobolev spaces
For n > d/2, the Sobolev (Bessel potential) space H^n(R^d, C) is known to be a Banach algebra with its standard norm || ||_n and the pointwise product; so, there is a best constant K_{n d} such that || f g ||_{n} <= K_{n d} || f ||_{n} || g ||_{n} for all f, g in this space.
C. Morosi, L. Pizzocchero
openaire +5 more sources
Optimal Control of AB Caputo Fractional Stochastic Integrodifferential Control System with Noninstantaneous Impulses. ABSTRACT This study is concerned with the existence of mild solution and optimal control for the Atangana–Baleanu fractional stochastic integrodifferential system with noninstantaneous impulses in Hilbert spaces. We verify the existence
Murugesan Johnson +2 more
wiley +1 more source
Convolution Algebraic Structures Defined by Hardy-Type Operators
The main aim of this paper is to show that certain Banach spaces, defined via integral kernel operators, are Banach modules (with respect to some known Banach algebras and convolution products on ℝ+).
Pedro J. Miana +2 more
doaj +1 more source

