Results 301 to 310 of about 11,250,995 (384)
Additive Manufacturing of Neuromorphic Systems
The crossover of additive Manufacturing (AM) and neuromorphic engineering promises a new paradigm in the fabrication of intelligent hardware—one that is sustainable, scalable, cost‐efficient, and customizable. The AM‐printed neuromorphic hardware (electronics and mechanical systems) is examined, and we discussed the technological integration.
Jiongyi Yan+3 more
wiley +1 more source
Synthetic Chromatophores for Color and Pattern Morphing Skins
Cephalopods use chromatophore organs (muscle‐actuated pigment sacs) to alter their skin color and pattern. Synthetic chromatophores, which closely mimic the mechano‐optical process found in cephalopods using stimuli‐responsive microscale hydrogel actuators, are reported.
Brennan P. Watts+5 more
wiley +1 more source
Bioinspired Adaptive Sensors: A Review on Current Developments in Theory and Application
This review comprehensively summarizes the recent progress in the design and fabrication of sensory‐adaptation‐inspired devices and highlights their valuable applications in electronic skin, wearable electronics, and machine vision. The existing challenges and future directions are addressed in aspects such as device performance optimization ...
Guodong Gong+12 more
wiley +1 more source
How perceptions of body motion and morphology affect complex social judgments
Kirby L. Johnson
openalex +1 more source
Self‐Spiking Linear Neuromorphic Soft Pressure Sensor for Underwater Sensing Applications
This study presents a novel design of a neuromorphic pressure sensor that can generate self‐spiking symmetric signals with direct event‐based encoding through the integration of magnetic spheres and alternating coil circuits. The key advantages of this work include high linearity up to 200 kPa (R2 = 0.997), self‐spiking behavior for simplified signal ...
Jingyi Yang+17 more
wiley +1 more source
3D Printing for Neural Repair: Bridging the Gap in Regenerative Medicine
This perspective article discusses how 3D bioprinting is advancing the development of neural tissue models and implants. It highlights recent progress in fabricating complex, multicellular neural constructs, examines current technical barriers, and outlines future applications in disease modeling, neurotoxicity testing, and regenerative therapies ...
Mitchell St Clair‐Glover+2 more
wiley +1 more source