Results 161 to 170 of about 1,008,053 (335)

Dual‐Ligand Metal‐Organic Frameworks via In Situ Amidoxime Engineering for Selective Ion Separation

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by microbial ion‐trapping mechanisms, a mild and universal strategy is developed to construct highly porous amidoxime‐functionalized MOFs. DFT calculations and molecular force measurements reveal that the dual‐ligand amidoxime configuration significantly strengthens Ga(III) affinity.
Zhifang Lv   +9 more
wiley   +1 more source

Fluorine‐Free Soft Nanocomposites for High‐Speed Liquid Impact Repellence

open access: yesAdvanced Functional Materials, EarlyView.
Fluorine‐free soft nanocomposite coatings are developed using silicone oil‐mediated mechanical‐stiffness control, enabling ‘dry’ liquid‐repellent surfaces that resist high‐speed water jet impacts up to ∼60 m/s. By tuning nanoparticle loading and oil content, the coatings also achieve >90% optical transparency, amphiphobicity with impact resistance to ...
Priya Mandal   +4 more
wiley   +1 more source

Non-stoichiometric Sodium Chloride Reprograms Ionic Homeostasis to Enhance Antitumor Immunity. [PDF]

open access: yesMedComm (2020)
Wang C   +9 more
europepmc   +1 more source

Sustainable Catalyst‐Free PLG Networks: Recyclability, Biodegradability, and Functional Performance

open access: yesAdvanced Functional Materials, EarlyView.
A catalyst‐additive free covalent adaptable network is developed from star‐shaped poly(lactide‐co‐glycolide) cross‐linked with pyromellitic dianhydride, enabling internal carboxylic acid‐driven transesterification. The resulting biodegradable network exhibits mechanical robustness (Young's modulus ≈1.6 GPa), complete recyclability, rapid biodegradation
Lars Schwarzer   +2 more
wiley   +1 more source

Influence of Sodium Chloride on the Behaviour of <i>Pseudomonas fluorescens</i> in Ripened Sheep Cheese. [PDF]

open access: yesMicroorganisms
Lopes S   +7 more
europepmc   +1 more source

Biomaterials‐Based Hydrogel with Superior Bio‐Mimetic Ionic Conductivity and Tissue‐Matching Softness for Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
By mimicking the ion‐accelerating effect of ion channel receptors in neuron membranes, a biomaterials‐based ionic hydrogel (BIH) is developed, which offers a high ionic conductivity of 7.04 S m−1, outperforming conventional chitosan, cellulose, agarose, starch, and gelatin based ionic hydrogels.
Baojin Chen   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy