Results 211 to 220 of about 7,448 (291)

Polaronic and Electrochemical Signatures in Group IVB (Ti, Zr, Hf) Oxides: Unified SKP–DFT Insights for Tunable Transport in Energy and Electronic Devices

open access: yesAdvanced Functional Materials, EarlyView.
Charge carrier concentration and mobility in TiO2, ZrO2, and HfO2 powder films are experimentally mapped as a function of temperature. The results uncover polaron‐mediated transport regimes and field‐activated conduction, enabling the design of oxide‐based electronic and energy devices with thermally tunable functionality.
Beatriz Moura Gomes   +3 more
wiley   +1 more source

Understanding Functional Materials at School

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines strategies for effectively teaching nanoscience in schools, focusing on challenges such as scale comprehension and curriculum integration. Emphasizing inquiry‐based learning and chemistry core concepts, it showcases hands‐on activities, digital tools, and interdisciplinary approaches.
Johannes Claußnitzer, Jürgen Paul
wiley   +1 more source

The Need for Near-Earth Multi-Spacecraft Heliospheric Measurements and an Explorer Mission to Investigate Interplanetary Structures and Transients in the Near-Earth Heliosphere. [PDF]

open access: yesSpace Sci Rev
Lugaz N   +33 more
europepmc   +1 more source

Oxygen Evolution Reaction by Ni‐Hexacyanoferrates Nanocubes Integrated with Trigonal Selenium: Effect, Properties and Performances

open access: yesAdvanced Functional Materials, EarlyView.
This work describes a novel approach to obtain composite submicrometric structures of nickel hexacyanoferrate integrating trigonal selenium with the aim of enhancing the catalytic efficiency in oxygen evolution reaction (OER). Interestingly, the nanostructures undergo a cube‐to‐sphere transition that optimizes surface properties, leading to superior ...
Edlind Lushaj   +10 more
wiley   +1 more source

Analyzing AZ-non-Maxwellian distributions in Earth's magnetosphere: MMS observations. [PDF]

open access: yesSci Rep
Abid AA   +7 more
europepmc   +1 more source

Electrochemically Driven Tandem In‐Plane Reduction and FeCl3‐ Intercalation of Highly Crystalline Graphene Oxide Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a green processing route for high‐performance reduced graphene oxide (rGO) transparent conductive films (TCFs) using highly crystalline Brodie's GO. In‐plane electrochemical reduction forms rGO on insulating substrates without toxic reductants or heat. Subsequent FeCl₃ intercalation enhances conductivity, overcoming the transparency–
Tatsuki Tsugawa   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy