Results 181 to 190 of about 264,054 (300)

Imperfection in Semiconductors Leading to High Performance Devices

open access: yesAdvanced Science, EarlyView.
Crystalline perfection is typically pursued in semiconductors to enhance device performance. However, through modeling and experimental work, we show that defects can be strategically employed in a specific detection regime to increase sensitivity to extreme values. GaN diodes are demonstrated to effectively detect high‐energy proton beams at fluxes as
Jean‐Yves Duboz   +8 more
wiley   +1 more source

Wafer‐Scale Room‐Temperature Processing of Lead‐Free Perovskites for Optoelectronic Applications

open access: yesAdvanced Science, EarlyView.
We present the first wafer‐scale, room‐temperature synthesis of lead‐free Cs3Sb2X9 (X = Br, I) perovskite films via solvent‐free magnetron sputtering. The resulting high‐performance photodetectors achieve benchmark responsivity, bandwidth, and detectivity, enabling scalable manufacturing for next‐generation optoelectronics.
Rosanna Mastria   +12 more
wiley   +1 more source

Tailoring Sieving Pores and Electrochemical Interface Intercalation for Mechanically Resilient Recycled Micro‐Silicon Anodes

open access: yesAdvanced Science, EarlyView.
Here, an innovative strategy is proposed, using micron‐sized Si recovered from photovoltaic waste as raw material, combined with electrochemical lithium alloying, reacting with CO2 to obtain sieve‐like porous structure design to overcome mechanical dynamic limitations.
Yunan Wei   +4 more
wiley   +1 more source

Dissolution Study of Biodegradable Magnesium Silicide Thin Films for Transient Electronic Applications

open access: yesAdvanced Science, EarlyView.
Magnesium silicide (Mg2Si) is introduced as a narrow‐bandgap, biodegradable semiconductor for transient electronics. RF‐sputtered and annealed Mg2Si thin films show high intrinsic electrical conductivity and low thermal conductivity. The polycrystalline material undergoes hydrolysis in aquatic and composting environments with minimal cytotoxicity ...
Ji‐Woo Gu   +17 more
wiley   +1 more source

Modification Strategies of Carbon‐Based Electrodes From Structural Regulation to Multifunctional Integration

open access: yesAdvanced Science, EarlyView.
Tracing the evolution from structural regulation to multifunctional integration, this paper systematically analyzes modification strategies for carbon‐based electrodes. It evaluates how element doping, surface functionalization, and composite material design affect the electrode performance, and offers perspectives on future applications and challenges
Yunlei Wang   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy