Results 121 to 130 of about 24,105,224 (402)

Ionic Metal Poly(heptazine Imides) and Single‐Atoms Interplay: Engineered Stability and Performance for Photocatalysis, Photoelectrocatalysis and Organic Synthesis

open access: yesAdvanced Functional Materials, EarlyView.
Poly(heptazine) imides (PHIs), a crystalline carbon nitride subclass, intercalate metals to deliver high stability, tunable electronics, and efficient charge separation. These features enable solar‐driven applications such as hydrogen evolution, CO₂ reduction, and organic synthesis.
Gabriel A. A. Diab   +6 more
wiley   +1 more source

Deuterium Fractionation: the Ariadne's Thread from the Pre-collapse Phase to Meteorites and Comets today

open access: yes, 2014
The Solar System formed about 4.6 billion years ago from a condensation of matter inside a molecular cloud. Trying to reconstruct what happened is the goal of this chapter.
Bockelee-Morvan, Dominique   +6 more
core   +2 more sources

Breaking the Capacity Limit for WO3 Anode‐Based Li‐Ion Batteries Using Photo‐Assisted Charging

open access: yesAdvanced Functional Materials, EarlyView.
This image illustrates a photo‐assisted rechargeable lithium‐ion battery. (a) shows the battery structure, where light enhances electron‐hole generation in the anode, boosting ion flow. (b) compares discharging performance, revealing over 60% higher capacity under light compared to dark conditions, showcasing the benefit of light‐assisted energy ...
Rabia Khatoon   +7 more
wiley   +1 more source

Improved Efficiency of Perovskite Light-Emitting Diodes Using a Three-Step Spin-Coated CH3NH3PbBr3 Emitter and a PEDOT:PSS/MoO3-Ammonia Composite Hole Transport Layer

open access: yesMicromachines, 2019
High efficiency perovskite light-emitting diodes (PeLEDs) using PEDOT:PSS/MoO3-ammonia composite hole transport layers (HTLs) with different MoO3-ammonia ratios were prepared and characterized. For PeLEDs with one-step spin-coated CH3NH3PbBr3 emitter, an
Yuanming Zhou   +9 more
doaj   +1 more source

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

In-situ preservation of nitrogen-bearing organics in Noachian Martian carbonates

open access: yesNature Communications, 2020
Mars has long been thought to contain organic compounds, but the origins and plausibility are debated. Here the authors employ a new technique to assess organic nitrogen compounds in a Martian meteorite, concluding that these compounds are indeed likely ...
Mizuho Koike   +6 more
doaj   +1 more source

United Stirling's Solar Engine Development: the Background for the Vanguard Engine [PDF]

open access: yes, 1984
The development and testing resulting in the Vanguard engine and some of the characteristics of the Stirling engine based power conversion unit are described.
Holgersson, S.
core   +1 more source

Ultrafast Room‐Temperature Nanofabrication via Ozone‐Based Gas‐Phase Metal‐Assisted Chemical Etching for High‐Performance Silicon Photodetectors

open access: yesAdvanced Functional Materials, EarlyView.
Ozone‐based gas‐phase metal‐assisted chemical etching enables unprecedented room‐temperature fabrication of high‐quality silicon nanowires. The superior oxidation potential of O3 drives rapid vertical etching (1 µm min−1) while maintaining exceptional structural integrity. The pristine nanowire surfaces enable high‐performance core‐shell photodetectors
Hyein Cho   +11 more
wiley   +1 more source

Enhancing Indoor Photovoltaic Efficiency to 37.6% Through Triple Passivation Reassembly and n‐Type to p‐Type Modulation in Wide Bandgap Perovskites

open access: yesAdvanced Functional Materials, EarlyView.
Triple Passivation Treatment (TPT) strategy enables 1.75 eV wide‐bandgap perovskite solar cells (WB‐PSCs) with suppressed halide phase segregation and n‐to‐p type surface transition. The photoluminescence quantum yield increases from 0.5 to 2.1%, indicating reduced non‐radiative losses.
Siming Huang   +12 more
wiley   +1 more source

Coupling Interfacial Redox‐Reactions with In Situ Proton Generation for the Photoelectrochemical Separation of Rare‐Earth Elements

open access: yesAdvanced Functional Materials, EarlyView.
To enhance the sustainability of electrochemical separations for resource recovery, a photoelectrochemical ion recovery system is developed that utilizes renewable solar energy. A composite integrating titianium dioxide nanorods and a redox‐copolymer enables spontaneous cation adsorption and light‐activated redox reactions for regeneration, thus ...
Ki‐Hyun Cho   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy