Results 141 to 150 of about 105,393 (314)
Active lithium loss (ALL) and capacity fade can be compensated by prelithiation, apparently simple via sacrificing additives e.g., lithium squarates. However, as a cathode additive it ruptures the cathode via gas evolution, while as an electrolyte additive it gets reductively depleted on anode side in course of solid electrolyte interphase (SEI ...
Ibrahim Lawan Abdullahi +8 more
wiley +1 more source
Prolonged water washing severely damages the surface layered structure of single‐crystal Ni‐rich cathodes, forming a thick rock‐salt barrier. In contrast, our 3‐min ultrafast washing removes residual lithium while confining surface reconstruction to an ultrathin 2–4 nm layer, thereby unlocking excellent fast‐charging and cycling stability.
Kaixin Liu +8 more
wiley +1 more source
Here, an innovative strategy is proposed, using micron‐sized Si recovered from photovoltaic waste as raw material, combined with electrochemical lithium alloying, reacting with CO2 to obtain sieve‐like porous structure design to overcome mechanical dynamic limitations.
Yunan Wei +4 more
wiley +1 more source
Highlights A scalable tape-casting method produces self-supported porous Li6.4La3Zr1.4Ta0.6O12. Combining the in-situ polymerization approach, a composite solid electrolyte with superior electrochemical properties is fabricated.
An-Giang Nguyen +3 more
doaj +1 more source
Mitigating Electrochemical Isolation in Ni‐Rich Layered Cathodes for Durable Solid‐State Batteries
Electrochemical isolation of Ni‐rich layered cathodes in sulfide solid‐state batteries is uncovered as a previously unrecognized but critical performance‐limiting pathway. This study elucidates its origin and impact and introduces a scalable mitigation strategy using oxygen‐functionalized conductive carbon.
Abhirup Bhadra +7 more
wiley +1 more source
Unveiling a Stable Polysulfide Transport Framework in a Fluorine‐Free Li‐S Batteries
This work unveils a lithium thiophosphate reaction pathway activated by trigger P2S5 units, which initiate fast self‐assembly and shift the system away from conventional Li‐S reactions. The reversible Li‐P‐S framework delivers stability, safety, and high energy density, while enabling a distinct solid‐liquid hybrid electrochemical mode that provides a ...
Feng‐Yu Wu +3 more
wiley +1 more source
An Ir‐based reversible copper electrodeposition variable‐emissivity device achieved over 8000 cycles with just 11% radiative temperature variation decay. This stability stems from Ir's inherent inertness, high conductivity, and strength, which collectively suppress cracking and corrosion.
Runyun He +11 more
wiley +1 more source
The Role of Phosphorous in the Solid Electrolyte Interphase of Argyrodite Solid Electrolytes
The solid electrolyte interphase that forms on Li6PS5Cl argyrodite solid electrolytes has been reported to continually grow through a diffusion-controlled process, yet this process is not fully understood. Here, we use a combination of electrochemical and X-ray photoelectron spectroscopy techniques to elucidate the role of phosphorus in this growth ...
Matthew Burton +7 more
openaire +2 more sources
Electrolyte interfaces with freshly plated lithium metal are crucial for the development of reservoir‐free all‐solid‐state batteries (ASSBs).
Timo Weintraut +5 more
doaj +1 more source
Solid-electrolyte interphases for all-solid-state batteries
Interfacial engineering, particularly the design of artificial solid-electrolyte interphases (SEIs), has been successfully applied in all-solid-state batteries (ASSLBs) for industrial applications. However, a fundamental understanding of the synthesis and mechanism models of artificial SEIs in all-solid-state Li-ion batteries remains limited.
Yu Xia +11 more
openaire +2 more sources

