Results 81 to 90 of about 105,393 (314)
A dual‐functional Li2B4O7 coating on carbon fibers is designed to resolve the critical interfacial degradation in sulfide all‐solid‐state batteries. The conformal layer acts as a physical barrier to suppress parasitic reactions while its unique dielectric properties simultaneously facilitate Li+ transport.
Yeonghoon Kim +5 more
wiley +1 more source
Solid–Electrolyte Interphase During Battery Cycling: Theory of Growth Regimes
AbstractThe capacity fade of modern lithium ion batteries is mainly caused by the formation and growth of the solid–electrolyte interphase (SEI). Numerous continuum models support its understanding and mitigation by studying SEI growth during battery storage. However, only a few electrochemical models discuss SEI growth during battery operation.
von Kolzenberg, Lars +2 more
openaire +6 more sources
Extensive Review of Materials for Next‐Generation Transparent Batteries and Their Design Strategies
Review explores emerging materials and design strategies for transparent batteries, examining electrodes, electrolytes, separators, and device architectures optimized for high electrochemical performance, mechanical flexibility, and optical transparency.
Atul Kumar Mishra +5 more
wiley +1 more source
Designing solid-liquid interphases for sodium batteries
The chemistry at the interface between electrolyte and electrode plays a critical role in determining battery performance. Here, the authors show that a NaBr enriched solid–electrolyte interphase can lower the surface diffusion barrier for sodium ions ...
Snehashis Choudhury +11 more
doaj +1 more source
Solid Electrolyte Interphase Growth in Lithium Metal Cells With Normal Electrolyte Flow
In high energy density lithium metal batteries (LMBs), dendrite and solid electrolyte interphase (SEI) growth reduce safety and longevity, respectively.
Mihir N. Parekh, Christopher D. Rahn
doaj +1 more source
Density functional theory and ab initio molecular dynamics simulations are applied to investigate the initial steps of ethylene carbonate (EC) decomposition on spinel Li(0.6)Mn(2)O(4) (100) surfaces.
Leung, Kevin
core +1 more source
Highly Reversible Lithium Storage in Nanostructured Silicon [PDF]
Anode materials of nanostructured silicon have been prepared by physical vapor deposition and characterized using electrochemical methods. The electrodes were prepared in thin-film form as nanocrystalline particles (12 nm mean diameter) and as continuous
Ahn, C. C. +3 more
core +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
An elastic and safe electrolyte is demanded for flexible batteries. Herein, a stretchable solid electrolyte comprised of crosslinked elastic polymer matrix, poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP), and flameproof triethyl phosphate (TEP)
Shengzhao Zhang +9 more
doaj +1 more source
Artificial Amorphous Interface Matters for Boosting High‐Voltage Stable LiCoO2 Cathode
The amorphization of phosphate‐based surface layer with favorable Li‐ion conducting kinetics is realized by precisely tailored atomic‐level fabrication. This amorphous coating enables the lithium cobalt oxide (LCO) cathode superior high‐voltage rate capability and cycling performance, owing to the fast interfacial ionic transport and maintained ...
Jinjin Ma +10 more
wiley +1 more source

