Results 61 to 70 of about 272,416 (303)

Unlocking Ultra‐Long Cycle Stability of Li Metal Electrode by Separators Modified by Porous Red Phosphorus Nanosheets

open access: yesAdvanced Functional Materials, EarlyView.
Coating the standard polypropylene separator with a porous red phosphorous nanosheet greatly improves cycling performance in Li electrode cells. The phosphorus‐based surface chemistry deactivates electrolyte solvent decomposition and enhances the cleavage of F‐containing salt, resulting in an inorganic‐dominated electrolyte interphase (SEI) composition
Jiangpeng Wang   +9 more
wiley   +1 more source

Electrochemical reaction in memristor devices in a set state

open access: yesAIP Advances, 2021
The growth of Ag-nanofilaments in the solid electrolyte films of memristors based on Ag30S2P14O42 is investigated. After the formation of the Ag-nanofilaments in the solid electrolyte, the memory cells are switched to the high conductive state.
Hongxuan Guo   +7 more
doaj   +1 more source

Shape-Controlled TiO2 Nanomaterials-Based Hybrid Solid-State Electrolytes for Solar Energy Conversion with a Mesoporous Carbon Electrocatalyst

open access: yesNanomaterials, 2021
One-dimensional (1D) titanium dioxide (TiO2) is prepared by hydrothermal method and incorporated as nanofiller into a hybrid polymer matrix of polyethylene glycol (PEG) and employed as a solid-electrolyte in dye-sensitized solar cells (DSSCs). Mesoporous
Seung Man Lim   +5 more
doaj   +1 more source

Cu‐Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper

open access: yesAdvanced Functional Materials, EarlyView.
HKUST‐1/TiO2 composite materials show a very high photocatalytic hydrogen evolution rate which increases as a function of the irradiation time until reaching a plateau and even surpasses the performance of the 1%Pt/TiO2 material after three photocatalytic cycles.
Alisha Khan   +9 more
wiley   +1 more source

All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks [PDF]

open access: yes, 2020
Functioning bulk-type all-solid-state batteries in a practical form factor with composite positive electrodes, using Al-substituted Li7La3Zr2O12 (LLZO) as the solid electrolyte, have been demonstrated for the first time.
Alvarado, J   +7 more
core   +1 more source

Electrocatalytic phenomena in gas phase reactions in solid electrolyte electrochemical cells [PDF]

open access: yes, 1988
The recent literature on electrocatalysis and electrocatalytic phenomena occurring in gas phase reactions on solid, oxygen conducting electrolytes is reviewed. In this field there are a number of different subjects which are treated separately. These are:
Burggraaf, A.J.   +2 more
core   +3 more sources

Atomic Size Misfit for Electrocatalytic Small Molecule Activation

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong   +3 more
wiley   +1 more source

Copper‐based Materials for Photo and Electrocatalytic Process: Advancing Renewable Energy and Environmental Applications

open access: yesAdvanced Functional Materials, EarlyView.
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida   +16 more
wiley   +1 more source

MnI‐Functionalized Covalent Organic Framework as Efficient Electrocatalyst for CO2 Reduction in a Catholyte‐Free Zero‐Gap Electrolyzer

open access: yesAdvanced Functional Materials, EarlyView.
This work demonstrates the successful integration of a phenanthroline‐based 2D COF with MnI catalytic sites into a catholyte‐free membrane‐electrode‐assembly cell for CO2 electroreduction. The crystalline COF actively suppresses Mn⁰–Mn⁰ dimerization, achieving a turnover frequency of 617 h⁻¹ at 2.8 V (full‐cell potential), and enabling stable operation.
Laura Spies   +8 more
wiley   +1 more source

Coating layer design principles considering lithium chemical potential distribution within solid electrolytes of solid-state batteries

open access: yesCommunications Materials
Introducing a coating layer at an active material /solid electrolyte interface is crucial for ensuring thermodynamic stability of the solid electrolyte at interfaces in solid-state batteries.
Yuta Kimura   +5 more
doaj   +1 more source

Home - About - Disclaimer - Privacy