Results 91 to 100 of about 148,614 (304)
For the first time, a highly sensitive electrochemical biosensor based on SiO2‐based hairy particles with a grafted PDMAEMA polymer brush containing a quantifiable and large amount of immobilized Laccase is reported. The fabricated biosensor exhibits a sensitivity of 0.14 A·m⁻¹, a limit of detection (LOD) of 0.1 µm, and a detection range of 0.3–750 µm,
Pavel Milkin +7 more
wiley +1 more source
Present paper reports, the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium based solid polymer electrolyte films comprising of PEO8-NaPF6+ x wt. % SN.
Arya, Anil, Sharma*, A. L.
core +1 more source
Diffusion and migration in polymer electrolytes [PDF]
Mixtures of neutral polymers and lithium salts have the potential to serve as electrolytes in next-generation rechargeable Li-ion batteries. The purpose of this review is to expose the delicate interplay between polymer-salt interactions at the segmental
Balsara, NP +4 more
core
Biomass Native Structure Into Functional Carbon‐Based Catalysts for Fenton‐Like Reactions
This study indicates that eight biomasses with 2D flaky and 1D acicular structures influence surface O types, morphology, defects, N doping, sp2 C, and Co nanoparticles loading in three series of carbon, N‐doped carbon, and cobalt/graphitic carbon. This work identifies how these structural factors impact catalytic pathways, enhancing selective electron
Wenjie Tian +7 more
wiley +1 more source
Oxygen reclamation with solid oxide electrolytes [PDF]
Electrolyte operated at an elevated temperature in an electrolysis cell regenerates oxygen from metabolic carbon dioxide found in closed-cycle cabin ...
Smart, W., Weissbart, J.
core +1 more source
A cerium oxide‐carbon nanohybrid catalyst is synthesized via two distinct routes and is integrated into H‐type cells and gas diffusion layers (GDLs) to enhance electrochemical performance. Structural variations significantly affect performance, with the solvothermal sample exhibiting higher current densities.
Alessia Pollice +9 more
wiley +1 more source
Modulating Electrochemical CO2 Reduction Pathways via Interfacial Electric Field
Engineering interfacial electric fields in Cu/ITO electrodes enables precise control of CO2 reduction pathways. Charge transfer from Cu to ITO generates positively charged Cu species that steer selectivity from ethylene toward methane. This work demonstrates how interfacial electric‐field modulation can direct reaction intermediates and transform ...
Mahdi Salehi +7 more
wiley +1 more source
Experimental and Computational Approaches to Interfacial Resistance in Solid-state Batteries
Solid-state batteries with inorganic solid electrolytes are expected to be an efficient solutionto the issues of current lithium-ion batteries that are originated from their organic-solventelectrolytes.
Kazunori eTakada, Takahisa eOhno
doaj +1 more source
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán +13 more
wiley +1 more source
All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks [PDF]
Functioning bulk-type all-solid-state batteries in a practical form factor with composite positive electrodes, using Al-substituted Li7La3Zr2O12 (LLZO) as the solid electrolyte, have been demonstrated for the first time.
Alvarado, J +7 more
core +1 more source

