Results 191 to 200 of about 148,614 (304)

Electrochemical Abuse‐Driven Thermal Runaway in Lithium‐Ion Batteries: Evolution From Beginning‐of‐Life to End‐of‐Life

open access: yesAdvanced Functional Materials, EarlyView.
Electrochemical abuse transforms thermal runaway behavior in lithium‐ion batteries. Through systematic decoupling of degradation mechanisms, this study reveals that lithium plating lowers the onset temperature by 10 °C, electrolyte consumption delays high‐temperature reactions, and capacity fade reduces total heat generation. These mechanistic insights
San Hwang   +12 more
wiley   +1 more source

Atomic mechanism of lithium dendrite penetration in solid electrolytes. [PDF]

open access: yesNat Commun
Zhang B   +9 more
europepmc   +1 more source

Solid polymeric electrolytes

open access: yesPolimery, 1992
ZBIGNIEW FLORJANCZYK   +1 more
openaire   +1 more source

Mesoporous Carbon Thin Films with Large Mesopores as Model Material for Electrochemical Applications

open access: yesAdvanced Functional Materials, EarlyView.
Mesoporous carbon thin films possessing 70 nm mesopores are prepared on titanium substrates by soft templating of resol resins with a self‐synthesized poly(ethylene oxide)‐block‐poly(hexyl acrylate) block copolymer. A strategy to avoid corrosion of the metal substrate is presented, and the films are extensively characterized in terms of morphology ...
Lysander Q. Wagner   +9 more
wiley   +1 more source

Electrochemically Driven Dissipative Growth of Affinity Hydrogels for Bioresponsive Interfaces

open access: yesAdvanced Functional Materials, EarlyView.
Voltage pulses drive the growth and reinforcement of hydrogel films under dissipative conditions. This biocompatible strategy enables efficient integration of affinity ligands into the hydrogel matrix, enhancing the selective capture of growth factors and allowing precise temporal control over their release, making them well‐suited as adaptive ...
Roberto Baretta, Marco Frasconi
wiley   +1 more source

Operando Temperature Sensing at the Actual Electrocatalytic Interface by Nanodiamond Quantum Sensors

open access: yesAdvanced Functional Materials, EarlyView.
By integrating a wide‐field microscope with a custom‐designed electrolyzer, nanoscale temperature changes can be recorded in situ during the electrolysis process without interfering with ongoing electrochemical reactions. This method establishes a correlation between the interface temperature and specific electrochemical reactions, making the measured ...
Zan Li   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy