Results 141 to 150 of about 780,995 (345)
The graphical abstract illustrates the synthesis pathway, morphological feature, and thermodynamic feasibility of entropy‐engineered NASICON cathodes for sodium‐ion batteries. Abstract Overcoming the energy density limitations of sodium‐ion batteries (NIBs) requires innovative strategies to optimize cathode materials.
Sharad Dnyanu Pinjari +9 more
wiley +1 more source
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source
This work presents a continuous linear gradient catalyst layer design, a general strategy for improving membrane electrode assemblies across electrochemical devices. Fabricated via a dual‐nozzle spray coating method, the architecture controls the Pt/carbon ratio, ionomer content and ionomer type across the catalyst layer, enhancing proton conduction ...
Shangwei Zhou +15 more
wiley +1 more source
An adapted processing for solvent‐free argyrodite solid electrolyte films based on insights into degradation mechanisms of the widely used binder polytetrafluoroethylene is presented. By adapting the dry film processing, long‐term cycling in Si||NMC pouch cells is demonstrated over more than 1000 cycles with a capacity retention of more than 80%, and ...
Maria Rosner +10 more
wiley +1 more source
Recent Advances in NASICON‐Type Electrolytes for Solid‐State Metal Batteries
Compared to traditional liquid electrolyte batteries, solid metal batteries offer advantages such as a wide operating temperature range, high energy density, and improved safety, making them a promising energy storage technology.
Jingrui Kang +17 more
doaj +1 more source
A dual‐binder dry‐processed electrode (DB‐DPE) combining PTFE and PVDF with a nanostructured Al current collector (NSA) forms a mechanically interlocked interface that significantly improves adhesion and reduces interfacial resistance. With an active material content as high as 96 wt.%, the NSA‐based DB‐DPE enables high‐mass‐loading operation (12.5 mAh
Seok Yun Kim +4 more
wiley +1 more source
Rechargeable zinc-iodine (ZnI _2 ) batteries have gained popularity within the realm of aqueous batteries due to their inherent advantages, including natural abundance, intrinsic safety, and high theoretical capacity. However, challenges persist in their
Yongxin Huang +11 more
doaj +1 more source
Capacity loss of non-aqueous Li-Air battery due to insoluble product formation: Approximate solution and experimental validation [PDF]
In this paper, we present a study of Lithium (Li)-air battery capacity by accounting for the voltage loss associated with the electrode passivation and transport resistance caused by insoluble product formation.
Read, JA, Wang, Y, Yuan, H
core
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang +7 more
wiley +1 more source
Sulfosalicylic acid (SSA) is introduced as a bifunctional additive for Aqueous zinc‐ion batteries. SSA reconstructs the solvation structure of Zn2+ through the synergistic effects of its multiple functional groups, suppressing side reactions while selectively promoting Zn (002) deposition to prevent dendrite formation.
Le Gao +8 more
wiley +1 more source

