Results 171 to 180 of about 780,995 (345)
Polyferrocene block copolymers are synthesized and assembled into micron‐sized polymer cubosomes with double diamond lattice and pore diameter of ≈30 nm. The ferrocene functionality is retained within the polymer cubosome wall as demonstrated on supramolecular modification, and oxidative disassembly.
Chin Ken Wong +4 more
wiley +1 more source
Mechanisms, development, and applications of silicon-based anodes in solid state batteries. [PDF]
Liang F +5 more
europepmc +1 more source
Synthesis of LiNixFe1−xPO4 solid solution as cathode materials for lithium ion batteries [PDF]
Meng, Ying Shirley +3 more
core +1 more source
Dual‐cation site engineering unlocks stable and fast sodium storage in Na4VMn(PO4)3 cathodes. Li+ at Na2 suppresses Jahn‐Teller distortion, while K+ at Na1 expands ion channels, enabling synchronized V/Mn redox and quasi‐single‐phase kinetics. This atomic‐level strategy achieves ultralong cycling stability, high‐rate capability, and full cell viability
Jiaze Sun +8 more
wiley +1 more source
Surface halogenation engineering for reversible silicon-based solid-state batteries. [PDF]
Li H +9 more
europepmc +1 more source
PTFE nanoparticle–anchored rGO (rGO@PTFE) for scalable solvent‐free fabrication of ultra‐thick, high‐density cathodes, achieving high conductivity (9.55 S cm−1), lithium transference (0.73), and improved wettability, is developed. The resulting cathode delivers 15.2 mAh cm−2 areal and 563 mAh cm−3 volumetric capacities, with full cells exhibiting 637 ...
Juhee Yoon +7 more
wiley +1 more source
Why Will Polymers Win the Race for Solid-State Batteries? [PDF]
Li Z, Peng S, Wei L, Guo X.
europepmc +1 more source
A strategic spin‐polarization suppression in Fe single‐atom catalysts is proposed to enhance electrocatalytic reduction of NO to NH3. Employing a top‐down electrospinning strategy, self‐supported FeSAC with Fe‐N3S1 coordination structure and spin‐state transition is engineered from high‐spin to low‐spin.
Jialing Song +13 more
wiley +1 more source
A Highly Conductive Halospinel Cathode for All-Solid-State Batteries. [PDF]
Baumgärtner JF +10 more
europepmc +1 more source
Artificial Amorphous Interface Matters for Boosting High‐Voltage Stable LiCoO2 Cathode
The amorphization of phosphate‐based surface layer with favorable Li‐ion conducting kinetics is realized by precisely tailored atomic‐level fabrication. This amorphous coating enables the lithium cobalt oxide (LCO) cathode superior high‐voltage rate capability and cycling performance, owing to the fast interfacial ionic transport and maintained ...
Jinjin Ma +10 more
wiley +1 more source

