Results 251 to 260 of about 315,021 (338)
Some of the next articles are maybe not open access.
Modern physics letters B, 2023
This study explores the novel solitary wave solutions of the perturbed Chen–Lee–Liu (CLL) equation, aiming to elucidate the physical and dynamic behaviors of pulses in optical fiber.
M. Khater
semanticscholar +1 more source
This study explores the novel solitary wave solutions of the perturbed Chen–Lee–Liu (CLL) equation, aiming to elucidate the physical and dynamic behaviors of pulses in optical fiber.
M. Khater
semanticscholar +1 more source
Modern physics letters B, 2023
In this paper, under the observation of extended modified rational expansion method based on symbolic computation, the multiple solitary wave solutions for nonlinear two-dimensional Jaulent–Miodek Hierarchy (JMH) equation are constructed.
M. Iqbal +3 more
semanticscholar +1 more source
In this paper, under the observation of extended modified rational expansion method based on symbolic computation, the multiple solitary wave solutions for nonlinear two-dimensional Jaulent–Miodek Hierarchy (JMH) equation are constructed.
M. Iqbal +3 more
semanticscholar +1 more source
NEW SOLITARY WAVE SOLUTIONS OF THE FRACTIONAL MODIFIED KdV–KADOMTSEV–PETVIASHVILI EQUATION
Fractals, 2023This work suggests a fractional modification of the KdV–Kadomtsev–Petviashvili model with the beta-derivative to consider unsmooth boundary. Some new interesting solitary waves are found for the first time ever by the fractional sine–cosine method and ...
Kang-le Wang
semanticscholar +1 more source
Exact solitary wave solutions of nonlinear wave equations
Science in China Series A: Mathematics, 2001zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Zhang, Guixu, Li, Zhibin, Duan, Yishi
openaire +1 more source
Solitary wave solutions of the MKdV− equation
Computer Methods in Applied Mechanics and Engineering, 1995zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Gardner, L. R. T. +2 more
openaire +1 more source
Solitary-Wave Solutions of the Benjamin Equation
SIAM Journal on Applied Mathematics, 1999The aim is to develop a rigorous constructive proof of existence and stability for solitary solutions to the Benjamin equation that describes wave propagation on an interface between two finite-depth layers of an inviscid fluid, in the case when capillary effects are not negligible.
Albert, John P. +2 more
openaire +2 more sources
Improved solution for solitary waves in arteries
Journal of Mathematical Biology, 1999Nonlinear waves are investigated numerically by a direct analysis of the field equations, thereby establishing the magnitude of the errors inherent in the commonly used reductive perturbation technique. The method is also applied beyond the long-wave approximation and a comparative assessment of the results obtained is presented.
Epstein, Marcelo, Johnston, Clifton
openaire +2 more sources
Relativistic Solitary-Wave Solutions of the Beat-Wave Equations
Physical Review Letters, 1986The relativistic equations governing the nonlinear interaction of two light waves and a Langmuir wave are shown to admit two classes of solitary-wave solutions. Temporal solitary waves propagate at speeds greater than the speed of light and carry no information.
, McKinstrie, , DuBois
openaire +2 more sources
International Journal of Geometric Methods in Modern Physics, 2023
This paper investigates different kinds of exact solutions of variable-coefficients Chiral Schrödinger equation [Formula: see text]. In this equation, the fractional quantum Hall effect edge states are described. By the unified method, we successfully get the soliton, solitary and elliptic wave solutions.
Liu Yang, Ben Gao
openaire +1 more source
This paper investigates different kinds of exact solutions of variable-coefficients Chiral Schrödinger equation [Formula: see text]. In this equation, the fractional quantum Hall effect edge states are described. By the unified method, we successfully get the soliton, solitary and elliptic wave solutions.
Liu Yang, Ben Gao
openaire +1 more source
Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations
Applied Mathematics and Computation, 2020Hierarchy of the perturbed nonlinear Schrodinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary
N. Kudryashov
semanticscholar +1 more source

