Ultra‐Flexible Dual‐Band Organic Photodetectors for Visible and Near‐Infrared Sensing
An ultra‐flexible dual‐band organic photodetector with a total thickness of 5.6 µm for bio‐sensing is developed. It selectively detects visible and near‐infrared light with high sensitivity by switching the voltage. Peripheral oxygen saturation (SpO2) measurement is demonstrated using the device attached to a finger under a single light source by ...
Sachi Awakura +6 more
wiley +1 more source
Corrigendum to "Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases" [Redox Biol. 79 (2025) 103464]. [PDF]
Rojo AI +27 more
europepmc +1 more source
Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang +5 more
wiley +1 more source
Clinico-radiological Analysis and outcomes of management of pineal region space occupying lesions: A multi-departmental, retrospective case series from Pakistan. [PDF]
Qadri HM +10 more
europepmc +1 more source
Recent Advances in Variable‐Stiffness Robotic Systems Enabled by Phase‐Change Materials
Phase‐change materials (PCMs), such as shape memory alloys, hydrogels, shape memory polymers, liquid crystal elastomers, and low‐melting‐point alloys, are driving advancements in stiffness‐tunable robotic systems across a wide range of applications. This review highlights recent progress in PCM‐enabled robotics, focusing on their underlying mechanisms,
Sukrit Gaira +5 more
wiley +1 more source
Ultraviolet and biological effective dose observations at Gale Crater, Mars. [PDF]
Viúdez-Moreiras D +5 more
europepmc +1 more source
Compliant Pneumatic Feet with Real‐Time Stiffness Adaptation for Humanoid Locomotion
A compliant pneumatic foot with real‐time variable stiffness enables humanoid robots to adapt to changing terrains. Using onboard vision and pressure control, the foot modulates stiffness within each gait cycle, reducing impact forces and improving balance. The design, cast in soft silicone with embedded air chambers and Kevlar wrapping, offers durable,
Irene Frizza +3 more
wiley +1 more source

