Results 131 to 140 of about 1,529 (146)
Some of the next articles are maybe not open access.
INFRA-SOLVMANIFOLDS OF TYPE (R)
The Quarterly Journal of Mathematics, 1995Für eine einfach zusammenhängende auflösbare Liesche Gruppe \(G\) wird das semidirekte Produkt \(\text{Aff} (G):=\Aut (G) \ltimes G\) als affine Gruppe von \(G\) bezeichnet. Ist nun \(\Gamma\) ein cokompaktes Gitter in \(G\) und \(\pi\leq\text{Aff}(G)\) eine torsionsfreie endliche Erweiterung von \(\Gamma\), \(\Gamma \vartriangleleft \pi\), so nennt ...
openaire +2 more sources
A note on compact solvmanifolds with Kahler structures
, 2004In this note we show that a compact solvmanifold admits a Kstructure if and only if it is a finite quotient of a complex torus which has a structure of a com- plex torus bundle over a complex torus.
K. Hasegawa
semanticscholar +1 more source
On complex solvmanifolds and affine structures
Annali di Matematica Pura ed Applicata, 1985There is a conjecture of \textit{A. Silva} [Rend. Semin. Mat., Torino 1983, Special Issue, 172-192 (1984)] that for the class of compact complex manifolds being affine is equivalent to being a solvmanifold. In this paper the authors show the existence of affine structures on solvmanifolds which satisfy their so-called K-condition.
Andreatta, Marco, L. Alessandrini
openaire +3 more sources
Standard Einstein Solvmanifolds as Critical Points
The Quarterly Journal of Mathematics, 2001The paper characterizes the rank-one Einstein solvmanifolds of a given dimension as the critical points of the modified scalar curvature functional. Let \((\mathfrak n, \langle\cdot,\cdot\rangle)\) be a fixed \(n\)-dimensional inner product space. Each element \(\mu\in \Lambda^2{\mathfrak n}^\ast\otimes{\mathfrak n}\) can be viewed as a bilinear skew ...
openaire +2 more sources
Determining the translational part of the fundamental group of an infra-solvmanifold of type (R)
Mathematical Proceedings of the Cambridge Philosophical Society, 1997K. Dekimpe
semanticscholar +1 more source
A Pseudo-Kähler Structure on a Nontoral Compact Complex Parallelizable Solvmanifold
, 2005Takumi Yamada
semanticscholar +1 more source
Curvatures on Vaisman solvmanifolds
Kodai Mathematical JournalA locally conformal Kähler manifold \((M^{2n}, g, J)\) is called a Vaisman manifold if its Lee form is parallel with respect to the Levi-Civita connection \(\nabla \) of the metric \(g\). Denote \(H\) the \((2n+1)\)-dimensional Heisenberg Lie group and \(\Gamma \) a lattice in \(H\). A Kodaira-Thurston manifold is a nilmanifold \(S^1 \times \Gamma /H\).
openaire +2 more sources
A non-Vaisman LCK solvmanifold associated to a one-dimensional extension of a 2-step nilmanifold
Differential geometry and its applicationsHiroshi Sawai
semanticscholar +1 more source

