Results 231 to 240 of about 86,204 (314)

Learning Highly Dynamic Skills Transition for Quadruped Jumping Through Constrained Space

open access: yesAdvanced Robotics Research, EarlyView.
A quadruped robot masters dynamic jumps through constrained spaces with animal‐inspired moves and intelligent vision control. This hierarchical learning approach combines imitation of biological agility with real‐time trajectory planning. Although legged animals are capable of performing explosive motions while traversing confined spaces, replicating ...
Zeren Luo   +6 more
wiley   +1 more source

Stable Imitation of Multigait and Bipedal Motions for Quadrupedal Robots Over Uneven Terrains

open access: yesAdvanced Robotics Research, EarlyView.
How are quadrupedal robots empowered to execute complex navigation tasks, including multigait and bipedal motions? Challenges in stability and real‐world adaptation persist, especially with uneven terrains and disturbances. This article presents an imitation learning framework that enhances adaptability and robustness by incorporating long short‐term ...
Erdong Xiao   +3 more
wiley   +1 more source

Energy Consumption Optimization in Trajectory Planning for Fuel Cell Hybrid Uavs Based On HMPC

open access: yesAdvanced Robotics Research, EarlyView.
The endurance limitation of multirotor drones is a critical challenge. This study adopts a hybrid power system of fuel cells and lithium‐ion batteries. Using Nondominated Sorting Genetic Algorithm II, it integrates trajectory planning with energy management optimization.
Xindi Wang   +7 more
wiley   +1 more source

Collision‐Resilient Winged Drones Enabled by Tensegrity Structures

open access: yesAdvanced Robotics Research, EarlyView.
Based on structures of birds such as the woodpeck, this article presents the collision‐resilient aerial robot, SWIFT. SWIFT leverages tensegrity structures in the fuselage and wings which allow it to undergo large deformations in a crash, without sustaining damage. Experiments show that SWIFT can reduce impact forces by 70% over conventional structures.
Omar Aloui   +5 more
wiley   +1 more source

An AI‐Enabled All‐In‐One Visual, Proximity, and Tactile Perception Multimodal Sensor

open access: yesAdvanced Robotics Research, EarlyView.
Targeting integrated multimodal perception of robots, an AI‐enabled all‐in‐one multimodal sensor is proposed. This sensor is capable of perceiving three types of modalities, including vision, proximity, and tactility. By toggling an ultraviolet light and adjusting the camera focus, it switches smoothly between multiple perceptual modalities, enabling ...
Menghao Pu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy