Results 271 to 280 of about 2,169,056 (342)

3D‐Printable Near‐Infrared‐Responsive Microscale Cantilever made of the Composite Consisting of Ceramic Particles and Graphene Flakes

open access: yesAdvanced Engineering Materials, EarlyView.
A near infrared‐responsive microscale cantilever is developed using a 3D‐printable composite based on photocurable resin consisting of sepiolite and graphene flakes. The material absorbs 1064 nm light, causing shape transformation with an average displacement of 1.3 mm in 1.7 s. Displacement is measured via video recording.
Karolina Laszczyk   +3 more
wiley   +1 more source

Development and Preliminary In Vivo Study of 3D‐Printed Bioactive Glass Scaffolds with Trabecular Architecture

open access: yesAdvanced Engineering Materials, EarlyView.
This study reports the fabrication of trabecular bioactive glass scaffolds (composition “1d”: 46.1SiO2‐28.7CaO‐8.8MgO‐6.2P2O5‐5.7CaF2‐4.5Na2O wt%) through vat photopolymerization and the relevant results from mechanical testing and in vivo implantation procedures in rabbit femora, showing great promise for bone tissue engineering applications.
Dilshat Tulyaganov   +8 more
wiley   +1 more source

Encapsulating Laser‐Induced Graphene to Preserve its Electrical Properties and Enhance its Mechanical Robustness

open access: yesAdvanced Engineering Materials, EarlyView.
It is demonstrated that laser‐induced graphene (LIG) can be encapsulated while preserving its electrical conductivity and enhancing its mechanical properties. Unlike previous encapsulation attempts, the optimal conditions described here result in sheet resistance of ≈2 Ω sq−1, resistance increase of only 5% upon encapsulation, and vastly improved ...
Fatemeh Bayat   +3 more
wiley   +1 more source

Production of Metallic Foam Precursors Using Current‐Activated Pressure‐Assisted Densification

open access: yesAdvanced Engineering Materials, EarlyView.
A powder compaction metallurgical method, known as current‐activated pressure‐assisted densification, is applied to enhance the compaction of metal foam precursors. This method improves precursor quality by achieving higher density, lower electrical resistivity, and more uniform pore nucleation in the resulting foams, reducing energy consumption and ...
Tillmann Robert Neu   +2 more
wiley   +1 more source

Improved Strength and Corrosion Resistance of Ti–50Zr Alloy Through Heat Treatment

open access: yesAdvanced Engineering Materials, EarlyView.
This work systematically analyzes the effects of heat treatment on mechanical properties and corrosion behavior of Ti‐50Zr alloy produced via vacuum arc melting. Microstructure transforms from coarse lamellar α phase in as‐cast condition to fine and uniformly distributes acicular α′ phase in heat‐treatment state.
Yuhua Li   +7 more
wiley   +1 more source

3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht   +5 more
wiley   +1 more source

Mechanically Adaptable High‐Performance p(SBMA‐MMA) Copolymer Hydrogel with Iron (II/III) Perchlorate for Wearable Thermocell Applications

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
A high‐performance n‐type element for quasi‐solid‐state thermocells has been introduced, outperforming conventional p‐type elements and showcasing the potential to harness body heat as an energy source or power embedded sensors. This advance significantly contributes to waste thermal energy harvesting and wearable technology, paving the way for self ...
Gilyong Shin   +10 more
wiley   +1 more source

Poly(1,4‐anthraquinone) as an Organic Electrode Material: Interplay of the Electronic and Structural Properties due to the Unusual Lone‐Pair‐π Conjugation

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
In this study, the unique role of the unusual lone‐pair‐π conjugation mechanism in poly(1,4‐anthraquinone) (P14AQ) is explored as an organic electrode material. Unlike traditional π‐π interactions, P14AQ's conjugation involves lone pairs of oxygen atoms interacting with the π cloud of adjacent units, enabling stable charge transport even with minimal π‐
Xiaotong Zhang, Piotr de Silva
wiley   +1 more source

Home - About - Disclaimer - Privacy