Results 81 to 90 of about 65,753 (249)
In this study, how friction‐welding parameters (rotational speed, etc.) affect the morphology, distribution, and local thickness of the intermetallic compound layer (IMC‐layer) in friction‐welded steel‐aluminum hybrid components is investigated. In the results, it is shown that lower speeds (700 rpm) lead to a more uniform, thinner IMC‐layer (<0.5 μm),
Christoph Kahra+6 more
wiley +1 more source
This study investigates the bond quality of co‐extruded aluminum–titanium hybrid profiles, focusing on the lateral angular co‐extrusion (LACE) process. It examines how heat treatments (HT) affect intermetallic phase formation, bond strength, and material properties.
Norman Mohnfeld+9 more
wiley +1 more source
Hydrostatic bearings excel in high‐precision applications, but their performance hinges on a continuous external supply. This study evaluates various material combinations for sliding surfaces to mitigate damage during supply failures or misalignment and to discover the most effective materials identified for enhancing the reliability and efficiency of
Michal Michalec+6 more
wiley +1 more source
In this research, ZrC coatings are evaluated against various counterprobes at the microscale using novel super‐stiff atomic force microscopy cantilevers. The chemical composition of the coating is shown to be an important factor influencing coating hardness and Young's modulus, while surface roughness, counterprobe hardness, and surface energy are the ...
Piotr Jenczyk+4 more
wiley +1 more source
Patient‐specific brain phantoms can replace animal trials, aid presurgical training, and enable in silico disease research on cerebrospinal fluid and ventricles. This study presents a method to create ventricular brain phantoms from three‐dimensional magnetic resonance images brain scans, resulting in durable, tunable, reproducible models that mimic ...
Kajal Chandraprakash Jain+3 more
wiley +1 more source
Ni‐base superalloys produced using additive manufacturing (AM) have a different response to heat treatments when compared to their conventional counterparts. Due to such unpredictability, various alloys with industrial interest are currently overlooked in most prior AM research.
Guilherme Maziero Volpato+6 more
wiley +1 more source
Development of Aluminum Scandium Alloys for Hydrogen Storage Valves
Different aluminum alloy series and various aluminum‐scandium alloys with differing Sc and Zr levels are evaluated for use in hydrogen storage valve production. The alloys undergo hardness testing, optical microscopy, and tensile strength analysis, with hardening behavior studied under varying conditions.
Francisco García‐Moreno+4 more
wiley +1 more source
Residual Stress States in Microstructurally Graded PBF–LB/M Austenitic Steel Components
This study examines microstructurally graded 316L rectangular tube profiles fabricated via PBF–LB/M using a dual‐laser system. A 1 kW top‐hat and a 400 W Gaussian laser create distinct grain sizes and crystallographic texture. Mechanical properties are linked to microstructural evolution driven by processing conditions.
Nico Möller+5 more
wiley +1 more source
This study reveals how wave propagation in FG‐MEE nanoplates can be tuned via material gradients, porosity, and external fields. Using NSGT and Hamilton's principle, analytical solutions capture key dispersion behaviors. Findings highlight the potential of smart nanoplates for adaptive control in high‐performance applications like sonar and aerospace ...
Mustafa Buğday, Ismail Esen
wiley +1 more source
Picosecond direct laser interference patterning (DLIP) enables precise microstructure fabrication on stainless steel. Using a multiscan approach, high‐aspect‐ratio patterns are achieved. Fluence influences structure growth and homogeneity, with smaller periods yielding better uniformity.
Fabian Ränke+5 more
wiley +1 more source