Results 221 to 230 of about 85,248 (291)
Skin‐Interfaced Therapeutic Patches for Wound Fluid Management and Transdermal Drug Delivery
This study presents an integrated skin‐interfaced device combining microfluidics, hydrogel film technology, flexible electronics, and iontophoresis‐based transdermal delivery of PDRN to enhance wound healing. The device effectively manages wound fluid, maintains optimal moisture, and non‐invasively delivers therapeutic drugs.
Dongjun Han +5 more
wiley +1 more source
Improvements and validation of spatiotemporal speckle correlation model for rolling shutter speckle imaging. [PDF]
Yi C, Byun S, Lee Y, Lee SA.
europepmc +1 more source
Osteogenic‐angiogenic cross‐talk is a vital prerequisite for vascularized bone regeneration. In this study, we investigated the effects of siRNA‐mediated silencing of two inhibitory proteins, Chordin and WWP‐1, via CaP‐NP‐loaded gelatin microparticles in osteogenically differentiated microtissues.
Franziska Mitrach +7 more
wiley +1 more source
Real-time monitoring of bacterial growth kinetics in suspensions using laser speckle imaging. [PDF]
Loutfi H +6 more
europepmc +1 more source
Design and simulation of GRIN objective lenses for an imaging fiber based speckle metrology system [PDF]
Patinharekandy Prabhathan +4 more
openalex +1 more source
Schematic diagram depicting the fabrication and application of thymosin β4 (Tβ4)‐loaded microneedle patches for wound treatment. The Tβ4 was loaded into chitosan (CS) and sucrose MNs under mild conditions (4°C, 65% relative humidity). The Tβ4 MN patch specifically binds to the downregulated immune regulators Vsig4 and IL22rα2, thereby accelerating ...
Shilong He +4 more
wiley +1 more source
Model-based evaluation of the microhemodynamic effects of PEGylated HBOC molecules in the rat brain cortex: a laser speckle imaging study. [PDF]
Portörő I +9 more
europepmc +1 more source
Real‐Time 3D Ultrasound Imaging with an Ultra‐Sparse, Low Power Architecture
This article presents a novel, ultra‐sparse ultrasound architecture that paves the way for wearable real‐time 3D imaging. By integrating a unique convolutional array with chirped data acquisition, the system achieves high‐resolution volumetric scans at a fraction of the power and hardware complexity.
Colin Marcus +9 more
wiley +1 more source

