Results 131 to 140 of about 126,566 (298)
Turbulence spectral anisotropy and energy flow at ion scales
We have analyzed the spectral properties and the anisotropy of the energy transfer rate in plasma turbulence by using high-resolution three-dimensional simulation of decaying turbulence at kinetic scales. We made use of an hybrid-PIC approach where ions are treated as particles and electrons as a massless fluid.
Simone Landi +5 more
openaire +1 more source
Two‐Dimensional Materials as a Multiproperty Sensing Platform
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana +11 more
wiley +1 more source
Intrinsically anisotropic 1D NbTe4 for self-powered polarization-sensitive photodetection
Polarization-sensitive photodetection enhances scene information capture, crucial for modern optoelectronic devices. One-dimensional (1D) materials with intrinsic anisotropy, capable of directly sensing polarized light, are promising for such ...
Huahu Luo +7 more
doaj +1 more source
Ultra low-loss super-resolution with extremely anisotropic semiconductor metamaterials
We investigate the mechanisms for the reduction of losses in doped semiconductor multilayers used for the construction of uniaxial metamaterials and show that maximizing the mean scattering time of the doped layers is key to spectrally isolating losses ...
W. S. Hart, A. O. Bak, C. C. Phillips
doaj +1 more source
Accurate computer simulations of the rotational dynamics of linear molecules solvated in He clusters indicate that the large-size (nano-droplet) regime is attained quickly for light rotors (HCN, CO) and slowly for heavy ones (OCS, N$_2$O, CO$_2$), thus ...
Baroni, S. +3 more
core +1 more source
Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus +5 more
wiley +1 more source
Prominent Role of Spin-Orbit Coupling in FeSe Revealed by Inelastic Neutron Scattering
In most existing theories for iron-based superconductors, spin-orbit coupling (SOC) has been assumed to be insignificant. Here, we use spin-polarized inelastic neutron scattering to show that collective low-energy spin excitations in the orthorhombic (or
Mingwei Ma +8 more
doaj +1 more source
The highly anisotropic Fermi surface of bismuth results in variations in magnetotransport properties across different crystallographic directions, which can be characterized by studying microcrystals. To avoid the observed surface melting under room temperature Focused Ion Beam (FIB) irradiation, two low‐temperature FIB fabrication methods are proposed
Amaia Sáenz‐Hernández +6 more
wiley +1 more source
Growth of Millimeter‐Sized BaTaO2N Single Crystals by an NH3‐Assisted BaCl2 Flux Method
Millimeter‐sized BaTaO2N single crystals are successfully grown from a BaCl2 flux under NH3 flow. Their comprehensive characterization, including dielectric properties, is demonstrated, and the possible growth mechanisms are discussed. Abstract Perovskite‐type oxynitrides have attracted considerable attention due to their excellent photocatalytic ...
Ginji Harada +2 more
wiley +1 more source
Local Thermal Conductivity Patterning in Rotating Lattice Crystals of Anisotropic Sb2S3
Microscale control of thermal conductivity in Sb2S3 is demonstrated via laser‐induced rotating lattice crystals. Thermal conductivity imaging reveals marked thermal transport anisotropy, with the c axis featuring amorphous‐like transport, whereas in‐plane directions (a, b) exhibit 3.5x and 1.7x larger thermal conductivity.
Eleonora Isotta +13 more
wiley +1 more source

