Results 151 to 160 of about 6,103 (201)
Some of the next articles are maybe not open access.
International Journal of Remote Sensing, 2012
Satellite imagery is formed by finite digital numbers representing a specific location of ground surface in which each matrix element is denominated as a picture element or pixel. The pixels represent the sensor measurements of spectral radiance. The radiance recorded in the satellite images is then an integrated sum of the radiances of all targets ...
Carmen Quintano +3 more
openaire +1 more source
Satellite imagery is formed by finite digital numbers representing a specific location of ground surface in which each matrix element is denominated as a picture element or pixel. The pixels represent the sensor measurements of spectral radiance. The radiance recorded in the satellite images is then an integrated sum of the radiances of all targets ...
Carmen Quintano +3 more
openaire +1 more source
Spatial–spectral preprocessing for spectral unmixing
International Journal of Remote Sensing, 2018Most techniques available in the endmember extraction rely on exploiting the spectral information of the data alone.
Yang Yan +4 more
openaire +1 more source
Spatially informed spectral unmixing
2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2015Spectral unmixing methods have traditionally relied on the plethora of information in the spectral domain to resolve subpixel components. Several new methods have utilised the spatial information contained within the hyperspectral image, however these are limited to the spatial resolution of the sensor.
Daniel L. Bongiorno +2 more
openaire +1 more source
Spectral Unmixing Using Deep Convolutional Encoder-Decoder
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021In this paper, we introduce ‘Unmixing Deep Image Prior’ (UnDIP), a deep learning-based technique for the linear hyperspectral unmixing problem. The proposed method contains two steps. First, the endmembers are extracted using a geometric endmember extraction method, i.e. a simplex volume maximization in a subspace of the dataset.
Rasti, B. +3 more
openaire +3 more sources
Optimal linear spectral unmixing
IEEE Transactions on Geoscience and Remote Sensing, 1999The optimal estimate of ground cover components of a linearly mixed spectral pixel in remote-sensing imagery is investigated. The problem is formulated as two consecutive constrained least-squares (LS) problems: the first problem concerns the estimation of the end-member spectra (EMS), and the second concerns the estimate, within each mixed pixel, of ...
Y.H. Hu, H.B. Lee, F.L. Scarpace
openaire +1 more source
Iterative spectral unmixing (ISU)
International Journal of Remote Sensing, 1999Spectral unmixing techniques strive to find proportions of end-members within a pixel from the observed mixed pixel spectrum and a number of pure end-member spectra of known composition. The outcomes of such analysis are fraction (abundance) images for the selected (pure) end-members and a root mean square (RMS) error estimate representing the ...
openaire +2 more sources
Spectral unmixing using linear unmixing under spatial autocorrelation constraints
2010 IEEE International Geoscience and Remote Sensing Symposium, 2010This paper presents a spectral unmixing approach that is implemented using linear unminxing method by a genetic algorithm. The unmixing is constrained not only by the negativity and sum-to-one of the abundances of endmembers at each pixel but also by the spatial autocorrelation of their abundances among eight neighbor pixels.
Xianfeng Song +2 more
openaire +1 more source
Spectral unmixing using distance geometry
2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011In this paper, we present a new method for solving the spectral unmixing problem which uses only the spectral distances between the data points and the endmembers. This method is obtained by reformulating every step of the recently developed SPU algorithm entirely in distance geometry, yielding a recursive algorithm based on the geometrical properties ...
Heylen, Rob, Scheunders, Paul
openaire +2 more sources
Particle filter for spectral unmixing
2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, 2011The paper addresses the problem of identification of fluorescent molecules, or fluorophores, in biological samples obtained from time-resolved fluorescence microscopy. The contribution of this work is an algorithm, based on particle filter optimization, that solves the spectral unmixing problem for more than two fluorophores even when they present ...
Omar Gutierrez-Navarro +4 more
openaire +1 more source

