Results 131 to 140 of about 151,516 (275)

Clean‐Limit 2D Superconductivity in a Thick Exfoliated Kagome Film

open access: yesAdvanced Functional Materials, EarlyView.
This study reports clean‐limit 2D superconductivity in a thick kagome system, analogous to the 3D case. It observes a drop in superfluid stiffness near the superconducting transition and a cusp‐like feature in the angular dependence of the upper critical field.
Fei Sun   +3 more
wiley   +1 more source

Electroactive Metal–Organic Frameworks for Electrocatalysis

open access: yesAdvanced Functional Materials, EarlyView.
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska   +7 more
wiley   +1 more source

Spatiotemporal modulation of ultrafast plasmonic vortices with spin–orbit coupling

open access: yesNew Journal of Physics
The vortex field of surface plasmon polariton with orbital angular momentum (OAM), called plasmonic vortex, has played an important role in various research fields.
Weipeng Li   +6 more
doaj   +1 more source

Anticrossings of spin-split Landau levels in an InAs two-dimensional electron gas with spin-orbit coupling [PDF]

open access: green, 2005
W. Desrat   +7 more
openalex   +1 more source

On‐Surface Indigo‐Based Bimolecular Coordination Networks with Programmable Regular or Vitreous Structure

open access: yesAdvanced Functional Materials, EarlyView.
A previously unreported coordination motif stabilising single Fe atoms by indigo chelation and pyridyl coordination on Au(111) has been revealed. By using planar tritopic pyridyl linkers (TPyB), extended 2D porous networks of indigo3(TPyB)2Fe6 form. These networks can be crystalline or vitreous and offer an environment where individual coordination ...
Hongxiang Xu   +9 more
wiley   +1 more source

Tunable Coordination Number in Non‐Metal‐Introduced Copper Catalysts Enables High‐Performance Electrochemical CO2 Reduction to C2 Products

open access: yesAdvanced Functional Materials, EarlyView.
Copper catalysts introduced with different non‐metallic elements regulating the coordination number of Cu are prepared by magnetron sputtering. Reducing the Cu coordination number enhances C─C coupling and boosts C2+ product selectivity, by lowering the energy barrier for the *CO → *CHO conversion step. The optimized Si‐doped Cu catalyst achieves a C2+
Xiaoye Du   +8 more
wiley   +1 more source

Direct Evidence of Topological Dirac Fermions in a Low Carrier Density Correlated 5d Oxide

open access: yesAdvanced Functional Materials, EarlyView.
The 5d oxide BiRe2O6 is discovered as a low‐carrier‐density topological semimetal hosting symmetry‐protected Dirac fermions stabilized by nonsymmorphic symmetries. Angle‐resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements reveal gapless Dirac cones, quasi‐2D Fermi surfaces, high carrier mobility, and a field ...
Premakumar Yanda   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy