Results 111 to 120 of about 1,109,861 (332)
Spin-foams for all loop quantum gravity [PDF]
RevTex4, 23 pages, 8 figures; important references added; minor corrections, version published in Class.Quant.Grav; theorem of injectivity of EPRL map ...
Kamiński, Wojciech +2 more
openaire +2 more sources
Operando Temperature Sensing at the Actual Electrocatalytic Interface by Nanodiamond Quantum Sensors
By integrating a wide‐field microscope with a custom‐designed electrolyzer, nanoscale temperature changes can be recorded in situ during the electrolysis process without interfering with ongoing electrochemical reactions. This method establishes a correlation between the interface temperature and specific electrochemical reactions, making the measured ...
Zan Li +7 more
wiley +1 more source
Microscale hydrogels (microgels) feature improved mass transport characteristics supportive of fast actuation and chemical tunability amenable to programmed stimuli response. A unique soft actuator architecture is realized by encapsulating microgels in soft microcirculatory systems which enable the convenient delivery of liquid stimuli for powering and
Nengjian Huang +2 more
wiley +1 more source
Finiteness and Dual Variables for Lorentzian Spin Foam Models
We describe here some new results concerning the Lorentzian Barrett-Crane model, a well-known spin foam formulation of quantum gravity. Generalizing an existing finiteness result, we provide a concise proof of finiteness of the partition function ...
Apostol T M +24 more
core +1 more source
SI‐bioATRP in Mesoporous Silica for Size‐Exclusion Driven Local Polymer Placement
An enzyme‐catalyzed surface‐initiated atom transfer radical polymerization (SI‐bioATRP) of an anionic monomer within mesoporous silica particles, using hemoglobin as a catalyst, allows for controlling the location of the formed polymer via size‐exclusion effects between the nanopores and the biomacromolecules, thereby opening routes to functional ...
Oleksandr Wondra +8 more
wiley +1 more source
In this study, the preparation techniques for silver‐based gas diffusion electrodes used for the electrochemical reduction of carbon dioxide (eCO2R) are systematically reviewed and compared with respect to their scalability. In addition, physics‐based and data‐driven modeling approaches are discussed, and a perspective is given on how modeling can aid ...
Simon Emken +6 more
wiley +1 more source
Discretisations, Constraints and Diffeomorphisms in Quantum Gravity
In this review we discuss the interplay between discretization, constraint implementation, and diffeomorphism symmetry in Loop Quantum Gravity and Spin Foam models. To this end we review the Consistent Discretizations approach, which is an application of
Benjamin Bahr +2 more
doaj +1 more source
Some Considerations on Discrete Quantum Gravity
Recent results in Local Regge Calculus are confronted with Spin Foam Formalism. Introducing Barrett-Crane Quantization in Local Regge Calculus makes it possible to associate a unique Spin $j_{h}$ with an hinge $h$, fulfilling one of the requirements of ...
Gionti, Gabriele, J, S.
core +1 more source
Purely geometric path integral for spin-foams [PDF]
Spin-foams are a proposal for defining the dynamics of loop quantum gravity via path integral. In order for a path integral to be at least formally equivalent to the corresponding canonical quantization, at each point in the space of histories it is important that the integrand have not only the correct phase -- a topic of recent focus in spin-foams --
Shirazi, Atousa Chaharsough +1 more
openaire +2 more sources
Theory‐Guided Design of Non‐Precious Single‐Atom Catalyst for Electrocatalytic Chlorine Evolution
To overcome the reliance on noble metals for the chlorine evolution reaction (CER), we designed a non‐precious single‐atom catalyst (SAC), NiN3O–O. It achieves a low overpotential of 75 mV, 95.8% Cl2 selectivity, and outperforms commercial dimensionally stable anodes (DSAs).
Kai Ma +9 more
wiley +1 more source

