Results 131 to 140 of about 47,027 (304)
Recent results in Local Regge Calculus are confronted with Spin Foam Formalism. Introducing Barrett-Crane Quantization in Local Regge Calculus makes it possible to associate a unique Spin jh with an hinge h, fulfilling one of the requirements of Spin Foam definition.
openaire +2 more sources
Adaptive Twisting Metamaterials
This work introduces torque‐controlled twisting metamaterials as a transformative platform for adaptive crashworthiness. By combining multiscale predictive modeling with experimental validation on additively manufactured gyroids, it demonstrates tunable stiffness, collapse stress, and energy absorption.
Mattia Utzeri +6 more
wiley +1 more source
Recent works by Chandrasekaran, Penington, and Witten have shown in various special contexts that the quantum-corrected Ryu-Takayanagi (RT) entropy (or its covariant Hubeny-Rangamani-Takayanagi (HRT) generalization) can be understood as computing an ...
Eugenia Colafranceschi +3 more
doaj +1 more source
This study proposes a function‐sharing anode design to enable nonmetallic lithium insertion while maintaining intimate interfacial contact with the solid‐state electrolyte. A combination of lithium‐compatible and conformable borohydrides, highly conformable indium metal, less‐graphitized acetylene black, and a layer of highly graphitized massive ...
Keita Kurigami +3 more
wiley +1 more source
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization
Rovelli Carlo
doaj
Volumetric additive manufacturing allows to print parts extremely fast, but is so far is limited by the build volume of the printers. The foaming materials presented here allow to expand printed parts up to 500% reaching densities of 0.16 g cm−3 as well as providing shape memory properties enabling the creation of lightweight, functional parts ...
Silvio Tisato +3 more
wiley +1 more source
Recent Advances in Variable‐Stiffness Robotic Systems Enabled by Phase‐Change Materials
Phase‐change materials (PCMs), such as shape memory alloys, hydrogels, shape memory polymers, liquid crystal elastomers, and low‐melting‐point alloys, are driving advancements in stiffness‐tunable robotic systems across a wide range of applications. This review highlights recent progress in PCM‐enabled robotics, focusing on their underlying mechanisms,
Sukrit Gaira +5 more
wiley +1 more source
Finite spin-foam-based theory of three- and four-dimensional quantum gravity [PDF]
Rodolfo Gambini, Jorge Pullin
openalex +1 more source
Liquid Metal Sensors for Soft Robots
This review thoroughly reviews liquid metal sensors in soft robots. Their unique material properties like high conductivity and good biocompatibility are analyzed. Working principles are classified, and applications in environmental perception, motion detection, and human—robot interaction are introduced.
Qi Zhang +7 more
wiley +1 more source

