Results 151 to 160 of about 1,109,861 (332)
Bulk amplitude and degree of divergence in 4D spin foams [PDF]
Lin-Qing Chen
openalex +1 more source
Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity
In a recent work, a dual formulation of group field theories as non-commutative quantum field theories has been proposed, providing an exact duality between spin foam models and non-commutative simplicial path integrals for constrained BF theories.
Aristide Baratin +7 more
core +2 more sources
This review outlines how understanding bone's biology, hierarchical architecture, and mechanical anisotropy informs the design of lattice structures that replicate bone morphology and mechanical behavior. Additive manufacturing enables the fabrication of orthopedic implants that incorporate such structures using a range of engineering materials ...
Stylianos Kechagias +4 more
wiley +1 more source
Advances in Safe, Flexible, and Stretchable Batteries for Wearable Applications
Unlike previous reviews centered on component‐based deformability, this work highlights safety‐driven design strategies for flexible and stretchable batteries. By integrating material‐level engineering, geometry‐controlled structures, biocompatibility, and self‐protection mechanisms, it establishes a unified framework that connects mechanical ...
Hyewon Kang +4 more
wiley +1 more source
Adhesive Double‐Network Granular Organogel E‐Skin
We introduce a double‐network granular organogel adhesive for electronic skin, overcoming adhesion and strength trade‐offs. It provides reversible, robust bonding and ionic conductivity, enabling wearable and soft robotic e‐skin. Thanks to the e‐skin adhesive, a soft robotic trunk can recognize touch, temperature, humidity, and acidity.
Antonia Georgopoulou +4 more
wiley +1 more source
Recent works by Chandrasekaran, Penington, and Witten have shown in various special contexts that the quantum-corrected Ryu-Takayanagi (RT) entropy (or its covariant Hubeny-Rangamani-Takayanagi (HRT) generalization) can be understood as computing an ...
Eugenia Colafranceschi +3 more
doaj +1 more source
Progress and Prospects of Persistent Luminescent Nanocrystals in Biomedical Applications
This review summarizes recent progress in materials‐level control of persistent luminescence, including mechanistic understanding, wavelength/intensity tuning, and activation strategies, as well as emerging biomedical applications in imaging, biosensing, cell tracking, optogenetic stimulation, and biophotochemical activation.
Peng Pei +5 more
wiley +1 more source
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime, is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization
Rovelli Carlo
doaj
Recent results in Local Regge Calculus are confronted with Spin Foam Formalism. Introducing Barrett-Crane Quantization in Local Regge Calculus makes it possible to associate a unique Spin jh with an hinge h, fulfilling one of the requirements of Spin Foam definition.
openaire +1 more source
Recent Advances in Variable‐Stiffness Robotic Systems Enabled by Phase‐Change Materials
Phase‐change materials (PCMs), such as shape memory alloys, hydrogels, shape memory polymers, liquid crystal elastomers, and low‐melting‐point alloys, are driving advancements in stiffness‐tunable robotic systems across a wide range of applications. This review highlights recent progress in PCM‐enabled robotics, focusing on their underlying mechanisms,
Sukrit Gaira +5 more
wiley +1 more source

