Results 161 to 170 of about 125,655 (330)
Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro +6 more
wiley +1 more source
Engineered GM1 Intersects Between Mitochondrial and Synaptic Pathways to Ameliorate ALS Pathology
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease driven by genetic and molecular disruptions affecting energy balance, protein homeostasis, and stress responses in nerve cells. Studies using human and rodent models identified convergent defects in mitochondria and synaptic function.
Federica Pilotto +11 more
wiley +1 more source
Disrupting CSPG‐Driven Microglia–Astrocyte Crosstalk Enables Scar‐Free Repair in Spinal Cord Injury
This study identifies CSPGs as key drivers of glial scar maturation after spinal cord injury by reprogramming microglial metabolism and inducing astrocyte fibrosis. To address this, a reactive oxygen species‐responsive, reactive astrocyte‐targeted ChABC gene delivery system is designed to locally degrade CSPGs, precisely disrupt maladaptive glial ...
Yufei Zheng +10 more
wiley +1 more source
Molecularly imprinted polymeric nanocarriers (nanoMIPs) offer robust, antibody‐mimetic platforms to overcome the blood‐brain barrier. The article surveys nanoMIP design and ligand‐directed surface engineering that harness receptor‐mediated transcytosis, and highlights therapeutic and diagnostic applications in neurodegeneration, brain tumors and ...
Ranjit De, Shuliang Shi, Kyong‐Tai Kim
wiley +1 more source
Immediate Effects of a Single Spinal Manipulation on Lower-Limb Strength in Healthy Individuals: A Critically Appraised Topic [PDF]
Christopher Kevin Wong +5 more
openalex +1 more source
In the unmethylated state, TEAD forms stable, repressive condensates that sequester the osteogenic master regulator RUNX2. Arginine methylation of TEAD at R55 acts as a molecular brake, dissolving these condensates to release RUNX2 and activate the osteogenic program.
Lei Cao +6 more
wiley +1 more source
Treatment and Response Factors in Muscle Activation during Spinal Manipulation. [PDF]
Currie SJ +3 more
europepmc +1 more source
Multimodal Layer‐Crossing Interrogation of Brain Circuits Enabled by Microfluidic Axialtrodes
The study introduces a flexible microfluidic axialtrode that integrates optical, electrical, and chemical modalities within a single polymer fiber. By redistributing electrodes and fluidic channels along the fiber axis via angled cleaving, it enables simultaneous optogenetic stimulation, electrophysiological recording, and drug delivery across brain ...
Kunyang Sui +8 more
wiley +1 more source
Spinal manipulations for migraine: an updated systematic review and meta-analysis of randomized clinical trials [PDF]
Paul Posadzki, A Klimek, Edzard Ernst
openalex +1 more source
Inspired by nature's competitive maneuvers, this study introduces a combustion‐driven soft actuator that powers a multi‐modal “Jump‐and‐Fly Catbot” (JFC). With millisecond response, high‐force output (over 70 times its weight) and precise control (error within 5%), the robot can jump, fly, hover, and escape from challenging environments, achieving ...
Hongkuan Ma +4 more
wiley +1 more source

