Results 111 to 120 of about 35,050 (341)

Reactive Carbide‐Based Synthesis and Microstructure of NASICON Sodium Metal All Solid‐State Electrolyte

open access: yesAdvanced Materials, EarlyView.
Sodium Metal All‐Solid State Batteries (Na‐ASSBs) are enabled by the synthesis of the solid state electrolyte, NASICON (Na1+xZr2SixP3‐xO12), using carbide‐based precursor compounds (ZrC and SiC); resulting in dense, pure, and mechanically improved microstructure.
Callum J. Campbell   +10 more
wiley   +1 more source

Unravelling the Secret of Sulfur Confinement and High Sulfur Utilization in Hybrid Sulfur‐Carbons

open access: yesAdvanced Materials, EarlyView.
Thermal condensation of inverse vulcanized sulfur‐carbon hybrids enables a bottom‐up sulfur confinement strategy, in which a protective carbon phase is progressively constructed around sulfur species. The resulting carbon nanodomains covalently tether sulfur chains and stabilize radical intermediates. This integrated architecture effectively suppresses
Tim Horner   +9 more
wiley   +1 more source

Radiation‐Resistant Aluminum Alloy for Space Missions in the Extreme Environment of the Solar System

open access: yesAdvanced Materials, EarlyView.
A novel ultrafine‐grained aluminum crossover alloy exhibits unprecedented radiation resistance and mechanical stability under extreme irradiation doses up to 100 dpa. The exceptional resilience arises from thermodynamically stable T‐phase precipitates, enabling lightweight structural materials for next‐generation spacecraft and extraterrestrial ...
Patrick D. Willenshofer   +9 more
wiley   +1 more source

Investigation of Titanium Hydride Produced from Titanium Waste

open access: yesThe Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science, 2010
The work presents an original method for titanium hydride production by hydrogenation and dehydrogenation of titanium waste in a specially designed for this purpose vacuum chamber.
Yavor LUKARSKI   +4 more
doaj  

Electrochemical Carbon Dioxide Reduction to Methanol on Copper‐Based Catalysts: Mechanistic Insights and Industrial Prospects

open access: yesAdvanced Materials, EarlyView.
This review presents a focused and integrated perspective on copper‐based catalysts for the selective electrochemical reduction of CO2 to methanol. It elucidates active site dynamics, mechanistic pathways, and structure–activity relationships, while connecting fundamental insights with catalyst design, reactor engineering, and techno‐economic ...
Debabrata Bagchi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy