Results 211 to 220 of about 11,578 (225)
Some of the next articles are maybe not open access.

Shrinking Starlike Sets

2021
Abstract ‘Shrinking Starlike Sets’ presents a proof that null decompositions with recursively starlike-equivalent elements shrink. Unlike in previous chapters, the shrink is produced abstractly rather than explicitly. The chapter proceeds in steps, first establishing the shrinking of null decompositions with starlike elements, then of ...
Jeffrey Meier   +2 more
openaire   +3 more sources

Generalized Roper-Suffridge Operator for ϵ Starlike and Boundary Starlike Mappings

Acta Mathematica Scientia, 2020
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Wang, Jie, Wang, Jianfei
openaire   +1 more source

Integral starlike trees

Journal of the Australian Mathematical Society, 1979
AbstractIn this note we determine which of the trees homeomorphic to a star have a spectrum consisting entirely of integers. We also specify the integral double stars, and we consider the problem of trees with more complicated structure.Subject classification (Amer. Math. Soc. (MOS) 1970): 05 C 05.
Watanabe, Mamoru, Schwenk, Allen J.
openaire   +2 more sources

Gamma-starlike functions

1976
Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros. ; Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 53-58 ; streszcz. pol., ros.
Lewandowski, Zdzisław (1929-2011)   +2 more
openaire   +1 more source

STARLIKENESS OF TRIPLE INTEGRAL OPERATORS

Far East Journal of Mathematical Sciences (FJMS), 2016
Summary: The main objective of this work is to obtain sufficient conditions for an analytic function defined in the open unit disk to be starlike of order \(\beta\) by using third-order differential inequalities. We shall give some conditions for \(f\) defined by triple integral operator to be starlike of order \(\beta\).
Chung, Yao Liang   +3 more
openaire   +2 more sources

Simple criterions for strongly starlikeness and starlikeness of certain order

Mathematische Nachrichten, 2003
AbstractIn this paper, we will give a sufficient condition for locally univalent holomorphic functions on the unit disc . in C to be strongly starlike. Also, we will give sufficient conditions for locally biholomorphic mappings on the unit ball B in a complex Banach space X to be starlike of certain order or strongly starlike.
Hamada, Hidetaka, Kohr, Gabriela
openaire   +2 more sources

On starlike functions

1976
Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 65-70 ; streszcz. pol., ros. ; Artykuł w: Annales Universitatis Mariae Curie-Skłodowska. Sectio A, Mathematica. Vol. 28 (1974), s. 65-70 ; streszcz. pol., ros.
openaire   +1 more source

Pseudo starlike functions involving convex combination of two starlike functions

Journal of Interdisciplinary Mathematics
In this paper, we introduce a new class of functions involving a familiar analytic characterization that was used to obtain sufficient conditions for starlikeness. We have discussed the impact of the convex combination of two starlike functions. The results obtained here extend or unify the various other well-known and new results.
K. R. Karthikeyan   +1 more
openaire   +1 more source

\(M\)-almost-starlike functions

1993
Let \(S\) be the usual class of normalized univalent functions in the unit disk \(\Delta\). Given \(M>1\) let \(S(M)= \{f\in S: | f(z)|< M\) for all \(z\in\Delta\}\) and let \(M(S)= \{f\in S: f(z)/M\in f(\Delta)\) for all \(z\in \Delta\}\). The author calls such functions \(M\)-almost starlike and proves that \(\varphi\in S\) is in \(M(S)\) if and only
openaire   +2 more sources

Starlike majorants and subordination

1961
Artykuł z: Annales Universitatis Mariae Curiae-Skłodowska. Sectio A, Mathematica. Vol. 15 (1961), s. 79-84, streszcz. pol., ros. ; Artykuł z: Annales Universitatis Mariae Curiae-Skłodowska. Sectio A, Mathematica. Vol. 15 (1961), s. 79-84, streszcz. pol., ros.
openaire   +1 more source

Home - About - Disclaimer - Privacy