Results 51 to 60 of about 676,319 (287)
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu +5 more
wiley +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu +11 more
wiley +1 more source
On the formation history of Galactic double neutron stars [PDF]
Double neutron stars (DNSs) have been observed as Galactic radio pulsars, and the recent discovery of gravitational waves from the DNS merger GW170817 adds to the known DNS population.
A. Vigna-G'omez +11 more
semanticscholar +1 more source
Direct Evidence of Topological Dirac Fermions in a Low Carrier Density Correlated 5d Oxide
The 5d oxide BiRe2O6 is discovered as a low‐carrier‐density topological semimetal hosting symmetry‐protected Dirac fermions stabilized by nonsymmorphic symmetries. Angle‐resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements reveal gapless Dirac cones, quasi‐2D Fermi surfaces, high carrier mobility, and a field ...
Premakumar Yanda +11 more
wiley +1 more source
Unified equations of state for cold non-accreting neutron stars with Brussels-Montreal functionals. I. Role of symmetry energy [PDF]
The theory of the nuclear energy-density functional is used to provide a unified and thermodynamically consistent treatment of all regions of cold non-accreting neutron stars. In order to assess the impact of our lack of complete knowledge of the density
J. Pearson +6 more
semanticscholar +1 more source
Heterogeniety in electrochemical systems heavily influences device performance and durability. The study shows unique evidence of spatio‐operational heterogeneity in fuel cells via operando neutron and X‐ray tomography. Large variations in membrane thickness and hydration depend upon location and operating conditions, with implications on membrane ...
Pranay Shrestha +9 more
wiley +1 more source
Quarkyonic Matter and Neutron Stars. [PDF]
We consider quarkyonic matter to naturally explain the observed properties of neutron stars. We argue that such matter might exist at densities close to that of nuclear matter, and at the onset, the pressure and the sound velocity in quarkyonic matter ...
L. McLerran, S. Reddy
semanticscholar +1 more source
In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang +19 more
wiley +1 more source
The cosmic merger rate of neutron stars and black holes [PDF]
Six gravitational wave detections have been reported so far, providing crucial insights on the merger rate of double compact objects. We investigate the cosmic merger rate of double neutron stars (DNSs), neutron star-black hole binaries (NSBHs) and black
M. Mapelli, N. Giacobbo
semanticscholar +1 more source

