Results 1 to 10 of about 67,232 (280)
The Relation between the Probability of Collision-Free Broadcast Transmission in a Wireless Network and the Stirling Number of the Second Kind [PDF]
The broadcast performance of the 802.11 wireless protocol depends on several factors. One of the important factor is the number of nodes simultaneously contending for the shared channel.
Prakash Veeraraghavan Golnar Khomami +2 more
doaj +2 more sources
Some identities involving degenerate Stirling numbers arising from normal ordering
In this paper, we derive some identities and recurrence relations for the degenerate Stirling numbers of the first kind and of the second kind, which are degenerate versions of the ordinary Stirling numbers of the first kind and of the second kind.
Taekyun Kim, Dae San Kim , Hye Kyung Kim
doaj +1 more source
Degenerate r-truncated Stirling numbers
For any positive integer $ r $, the $ r $-truncated (or $ r $-associated) Stirling number of the second kind $ S_{2}^{(r)}(n, k) $ enumerates the number of partitions of the set $ \{1, 2, 3, \dots, n\} $ into $ k $ non-empty disjoint subsets, such that ...
Taekyun Kim, Dae San Kim, Jin-Woo Park
doaj +1 more source
Asymptotics of Stirling numbers of the second kind [PDF]
This work was partially supported by the Office of Naval Research under Contract Number NR 042-286 at the Naval Postgraduate School.
Bleick, W.E., Wang, Peter C.C.
openaire +3 more sources
Vector weighted Stirling numbers and an application in graph theory
We introduce \textit{vector weighted Stirling numbers}, which are a generalization of ordinary Stirling numbers and restricted Stirling numbers. Some relations between vector weighted Stirling numbers and ordinary Stirling numbers and some of their ...
Fahimeh Esmaeeli +2 more
doaj +1 more source
Some results on p-adic valuations of Stirling numbers of the second kind
Let $n$ and $k$ be nonnegative integers. The Stirling number of the second kind, denoted by $S(n, k)$, is defined as the number of ways to partition a set of $n$ elements into exactly $k$ nonempty subsets and we have $$ S(n, k)=\frac{1}{k!}\sum_{i=0}^{k}(
Yulu Feng, Min Qiu
doaj +1 more source
Normal ordering of degenerate integral powers of number operator and its applications
The normal ordering of an integral power of the number operator in terms of boson operators is expressed with the help of the Stirling numbers of the second kind. As a ‘degenerate version’ of this, we consider the normal ordering of a degenerate integral
Taekyun Kim, Dae San Kim, Hye Kyung Kim
doaj +1 more source
Three Representations for Set Partitions
The Set Partitioning Problem (SPP) aims to obtain non-empty disjoint subsets of objects such that their union equals the whole set of objects, and the partition meets some prespecified criteria.
Jose Torres-Jimenez +4 more
doaj +1 more source
Dirichlet series and series with Stirling numbers
This paper presents a number of identities for Dirichlet series and series with Stirling numbers of the first kind. As coefficients for the Dirichlet series we use Cauchy numbers of the first and second kinds, hyperharmonic numbers, derangement numbers ...
Khristo Boyadzhiev
doaj +1 more source
Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function
A new family of p-Bernoulli numbers and polynomials was introduced by Rahmani (J. Number Theory 157:350–366, 2015) with the help of the Gauss hypergeometric function.
Taekyun Kim +4 more
doaj +1 more source

