Results 31 to 40 of about 52,395 (273)

Asymptotics of Stirling numbers of the second kind [PDF]

open access: yesProceedings of the American Mathematical Society, 1974
This work was partially supported by the Office of Naval Research under Contract Number NR 042-286 at the Naval Postgraduate School.
Bleick, W.E., Wang, Peter C.C.
openaire   +3 more sources

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind [PDF]

open access: yes, 2013
In the paper, by establishing a new and explicit formula for computing the $n$-th derivative of the reciprocal of the logarithmic function, the author presents new and explicit formulas for calculating Bernoulli numbers of the second kind and Stirling ...
Feng Qi (祁锋)
semanticscholar   +1 more source

A note on degenerate r-Stirling numbers

open access: yesJournal of Inequalities and Applications, 2020
The aim of this paper is to study the unsigned degenerate r-Stirling numbers of the first kind as degenerate versions of the r-Stirling numbers of the first kind and the degenerate r-Stirling numbers of the second kind as those of the r-Stirling numbers ...
Taekyun Kim   +3 more
doaj   +1 more source

A Note on Multi-Euler–Genocchi and Degenerate Multi-Euler–Genocchi Polynomials

open access: yesJournal of Mathematics, 2023
Recently, the generalized Euler–Genocchi and generalized degenerate Euler–Genocchi polynomials are introduced. The aim of this note is to study the multi-Euler–Genocchi and degenerate multi-Euler–Genocchi polynomials which are defined by means of the ...
Taekyun Kim   +3 more
doaj   +1 more source

Explicit estimates for the Stirling numbers of the second kind [PDF]

open access: green
We give explicit estimates for the Stirling numbers of the second kind $S(n,m)$. With a few exceptions, such estimates are asymptotically sharp. The form of these estimates varies according to $m$ lying in the central or non-central regions of $\{1,\ldots ,n\}$.
José A. Adell
openaire   +3 more sources

Normal ordering associated with λ-Stirling numbers in λ-shift algebra

open access: yesDemonstratio Mathematica, 2023
It is known that the Stirling numbers of the second kind are related to normal ordering in the Weyl algebra, while the unsigned Stirling numbers of the first kind are related to normal ordering in the shift algebra.
Kim Taekyun, Kim Dae San, Kim Hye Kyung
doaj   +1 more source

Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers

open access: yesAdvances in Difference Equations, 2020
The aim of this paper is to study Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers of the first and second kinds.
Taekyun Kim   +3 more
doaj   +1 more source

Note on the Higher-Order Derivatives of the Hyperharmonic Polynomials and the r-Stirling Polynomials of the First Kind

open access: yesAxioms, 2022
In this paper, we focus on the higher-order derivatives of the hyperharmonic polynomials, which are a generalization of the ordinary harmonic numbers. We determine the hyperharmonic polynomials and their successive derivatives in terms of the r-Stirling ...
José L. Cereceda
doaj   +1 more source

Properties of Stirling Numbers of the Second Kind

open access: green, 1971
The fact that Stirling Numbers of the Second Kind have arisen in various nonrelated fields, from microelectronics to topology, established the need for a more extensive study of the properties of those Stirling numbers. In order to study the properties, new identities and inequalities for Stirling Numbers if the Second Kind must be formed.
Christopher Benjes
openaire   +3 more sources

Fully degenerate Bernoulli numbers and polynomials

open access: yesDemonstratio Mathematica, 2022
The aim of this article is to study the fully degenerate Bernoulli polynomials and numbers, which are a degenerate version of Bernoulli polynomials and numbers and arise naturally from the Volkenborn integral of the degenerate exponential functions on Zp{
Kim Taekyun, Kim Dae San, Park Jin-Woo
doaj   +1 more source

Home - About - Disclaimer - Privacy