Results 41 to 50 of about 50,310 (297)

A note on degenerate r-Stirling numbers

open access: yesJournal of Inequalities and Applications, 2020
The aim of this paper is to study the unsigned degenerate r-Stirling numbers of the first kind as degenerate versions of the r-Stirling numbers of the first kind and the degenerate r-Stirling numbers of the second kind as those of the r-Stirling numbers ...
Taekyun Kim   +3 more
doaj   +1 more source

A Note on Multi-Euler–Genocchi and Degenerate Multi-Euler–Genocchi Polynomials

open access: yesJournal of Mathematics, 2023
Recently, the generalized Euler–Genocchi and generalized degenerate Euler–Genocchi polynomials are introduced. The aim of this note is to study the multi-Euler–Genocchi and degenerate multi-Euler–Genocchi polynomials which are defined by means of the ...
Taekyun Kim   +3 more
doaj   +1 more source

Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers

open access: yesAdvances in Difference Equations, 2020
The aim of this paper is to study Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers of the first and second kinds.
Taekyun Kim   +3 more
doaj   +1 more source

Normal ordering associated with λ-Stirling numbers in λ-shift algebra

open access: yesDemonstratio Mathematica, 2023
It is known that the Stirling numbers of the second kind are related to normal ordering in the Weyl algebra, while the unsigned Stirling numbers of the first kind are related to normal ordering in the shift algebra.
Kim Taekyun, Kim Dae San, Kim Hye Kyung
doaj   +1 more source

Note on the Higher-Order Derivatives of the Hyperharmonic Polynomials and the r-Stirling Polynomials of the First Kind

open access: yesAxioms, 2022
In this paper, we focus on the higher-order derivatives of the hyperharmonic polynomials, which are a generalization of the ordinary harmonic numbers. We determine the hyperharmonic polynomials and their successive derivatives in terms of the r-Stirling ...
José L. Cereceda
doaj   +1 more source

Vector weighted Stirling numbers and an application in graph theory

open access: yesElectronic Journal of Graph Theory and Applications, 2021
We introduce \textit{vector weighted Stirling numbers}, which are a generalization of ordinary Stirling numbers and restricted Stirling numbers. Some relations between vector weighted Stirling numbers and ordinary Stirling numbers and some of their ...
Fahimeh Esmaeeli   +2 more
doaj   +1 more source

Fully degenerate Bernoulli numbers and polynomials

open access: yesDemonstratio Mathematica, 2022
The aim of this article is to study the fully degenerate Bernoulli polynomials and numbers, which are a degenerate version of Bernoulli polynomials and numbers and arise naturally from the Volkenborn integral of the degenerate exponential functions on Zp{
Kim Taekyun, Kim Dae San, Park Jin-Woo
doaj   +1 more source

Some Identities of Degenerate Bell Polynomials

open access: yesMathematics, 2020
The new type degenerate of Bell polynomials and numbers were recently introduced, which are a degenerate version of Bell polynomials and numbers and are different from the previously introduced partially degenerate Bell polynomials and numbers.
Taekyun Kim   +3 more
doaj   +1 more source

Normal ordering of degenerate integral powers of number operator and its applications

open access: yesApplied Mathematics in Science and Engineering, 2022
The normal ordering of an integral power of the number operator in terms of boson operators is expressed with the help of the Stirling numbers of the second kind. As a ‘degenerate version’ of this, we consider the normal ordering of a degenerate integral
Taekyun Kim, Dae San Kim, Hye Kyung Kim
doaj   +1 more source

A Family of the r-Associated Stirling Numbers of the Second Kind and Generalized Bernoulli Polynomials

open access: yesAxioms, 2021
In this article, we derive representation formulas for a class of r-associated Stirling numbers of the second kind and examine their connections with a class of generalized Bernoulli polynomials.
P. Ricci, R. Srivastava, P. Natalini
semanticscholar   +1 more source

Home - About - Disclaimer - Privacy