Results 91 to 100 of about 14,387 (264)

Single Solid‐State Ion Channels as Potentiometric Nanosensors

open access: yesAdvanced Functional Materials, EarlyView.
Single gold nanopores functionalized with mixed self‐assembled monolayers act as solid‐state ion channels for direct, selective potentiometric sensing of inorganic ions (Ag⁺). The design overcomes key miniaturization barriers of conventional ion‐selective electrodes by combining low resistivity with suppressed loss of active components, enabling robust
Gergely T. Solymosi   +4 more
wiley   +1 more source

Atomically Revealing Bulk Point Defect Dynamics in Hydrogen‐Driven γ‐Fe2O3 → Fe3O4 → FeO Transformation

open access: yesAdvanced Functional Materials, EarlyView.
In situ TEM uncovers the atomic‐scale mechanisms underlying hydrogen‐driven γ‐Fe2O3→Fe3O4→FeO reduction. In γ‐Fe2O3, oxygen vacancies cluster around intrinsic Fe vacancies, leading to nanopore formation, whereas in Fe3O4, vacancy aggregation is suppressed, preserving a dense structure.
Yupeng Wu   +14 more
wiley   +1 more source

Universal Neuromorphic Element: NbOx Memristor with Co‐Existing Volatile, Non‐Volatile, and Threshold Switching

open access: yesAdvanced Functional Materials, EarlyView.
A W/NbOx/Pt memristor demonstrates the coexistence of volatile, non‐volatile, and threshold switching characteristics. Volatile switching serves as a reservoir computing layer, providing dynamic short‐term processing. Non‐volatile switching, stabilized through ISPVA, improves reliable long‐term readout. Threshold switching operates as a leaky integrate
Ungbin Byun, Hyesung Na, Sungjun Kim
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Smarter Sensors Through Machine Learning: Historical Insights and Emerging Trends across Sensor Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights how machine learning (ML) algorithms are employed to enhance sensor performance, focusing on gas and physical sensors such as haptic and strain devices. By addressing current bottlenecks and enabling simultaneous improvement of multiple metrics, these approaches pave the way toward next‐generation, real‐world sensor applications.
Kichul Lee   +17 more
wiley   +1 more source

Living Liquid Metal Composites Embedded with Electrogenic Endospores for Next‐Generation Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
A new class of living liquid metal composites is introduced, embedding Bacillus subtilis endospores into eutectic gallium–indium (EGaIn). The spores enhance droplet coalescence, strengthen interfacial conductivity, and provide on‐demand electrogenic functionality after germination. The composites exhibit high conductivity, self‐healing, patternability,
Maryam Rezaie, Yang Gao, Seokheun Choi
wiley   +1 more source

Electron–Matter Interactions During Electron Beam Nanopatterning

open access: yesAdvanced Functional Materials, EarlyView.
This article reviews the electron–matter interactions important to nanopatterning with electron beam lithography (EBL). Electron–matter interactions, including secondary electron generation routes, polymer radiolysis, and electron beam induced charging, are discussed.
Camila Faccini de Lima   +2 more
wiley   +1 more source

In Materia Shaping of Randomness with a Standard Complementary Metal‐Oxide‐Semiconductor Transistor for Task‐Adaptive Entropy Generation

open access: yesAdvanced Functional Materials, EarlyView.
This study establishes a materials‐driven framework for entropy generation within standard CMOS technology. By electrically rebalancing gate‐oxide traps and Si‐channel defects in foundry‐fabricated FDSOI transistors, the work realizes in‐materia control of temporal correlation – achieving task adaptive entropy optimization for reinforcement learning ...
Been Kwak   +14 more
wiley   +1 more source

Lithium Intercalation in the Anisotropic Van Der Waals Semiconductor CrSBr

open access: yesAdvanced Functional Materials, EarlyView.
We report the lithium intercalation in the layered van der Waals crystal CrSBr, revealing strongly anisotropic ion‐migration dynamics. Optical and electrical characterization of exfoliated CrSBr shows lithium diffusion coefficients that differ by more than an order of magnitude along a‐ and b‐directions, consistent with molecular dynamics simulations ...
Kseniia Mosina   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy