Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
Dynamics and forecasting of an age-structured stochastic SIR model with Lévy perturbations via physics-informed neural networks. [PDF]
Zhang G, Wang Z, Li Z, Chen S, Chen Q.
europepmc +1 more source
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas +4 more
wiley +1 more source
Quantitative Treatments for Explaining the Mechanism and Kinetics of Catalytic Electron Transfers in Murburn Processes, Particularly Involving Heme Enzymes Like (Per)oxidases and P450s. [PDF]
Manoj KM +4 more
europepmc +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source
Unilateral incentive alignment in two-agent stochastic games. [PDF]
McAvoy A +7 more
europepmc +1 more source
A Generalized Framework for Data‐Efficient and Extrapolative Materials Discovery for Gas Separation
This study introduces an iterative supervised machine learning framework for metal‐organic framework (MOF) discovery. The approach identifies over 97% of the best performing candidates while using less than 10% of available data. It generalizes across diverse MOF databases and gas separation scenarios.
Varad Daoo, Jayant K. Singh
wiley +1 more source
Identification of stochastic optical solitons in a generalized NLSE characterized by fourth order dispersion and weak nonlocality. [PDF]
Ahmed KK +5 more
europepmc +1 more source
Quadrotor unmanned aerial vehicle control is critical to maintain flight safety and efficiency, especially when facing external disturbances and model uncertainties. This article presents a robust reinforcement learning control scheme to deal with these challenges.
Yu Cai +3 more
wiley +1 more source
Regulation in ecological systems: an overview. [PDF]
Pinto Leite CM +3 more
europepmc +1 more source

