Results 181 to 190 of about 246,578 (242)

A Lung‐Immune Dual‐Humanized Mouse Using Cryopreserved Tissue Enables Infection and Immune Profiling of Human Common Cold Coronaviruses

open access: yesAdvanced Science, EarlyView.
Cryopreserved lung‐humanized mice overcome the dependency to fresh tissues and permit head‐to‐head profiling of all four human common cold coronaviruses versus SARS‐CoV‐2 infection; the model validates Paxlovid efficacy against HKU1 and, when coupled with human immune‐system engraftment, enables interrogation of lung‐resident human immunity and HKU1 ...
Chunyu Cheng   +9 more
wiley   +1 more source

The Mitochondrial Guardian α‐Amyrin Mitigates Alzheimer's Disease Pathology via Modulation of the DLK‐SARM1‐ULK1 Axis

open access: yesAdvanced Science, EarlyView.
Dietary habits play a key role in chronic diseases, and higher annual consumption of fruit and vegetable may lower risk of dementia. Artificial intelligence predicts the lipid‐like compound α‐Amyrin (αA) from plants with edible peels as a drug candidate against Alzheimer's disease.
Shu‐Qin Cao   +36 more
wiley   +1 more source

Biohybrid Tendons Enhance the Power‐to‐Weight Ratio and Modularity of Muscle‐Powered Robots

open access: yesAdvanced Science, EarlyView.
Biohybrid robots powered by skeletal muscle actuators are capable of dynamically adapting to environmental cues. This study takes inspiration from native muscle–tendon architecture by leveraging tough hydrogels as synthetic tendons for muscle actuators to enhance the power‐to‐weight ratio and modularity of biohybrid machines.
Nicolas Castro   +11 more
wiley   +1 more source

Dipiperazine‐Phenyl Derivatives Based on Convergent Molecular Platforms Can Reverse Multidrug Resistance in Gram‐Negative Bacteria by Inhibiting Efflux and Permeabilizing Cell Membranes

open access: yesAdvanced Science, EarlyView.
By integrating a convergent molecular platform strategy, this study designed a novel dual‐target C5 to combat multidrug‐resistant Gram‐negative bacteria. C5 synergistically enhances antibiotic efficacy by inhibiting efflux pumps and increasing bacterial membrane permeability.
Jiale Dong   +11 more
wiley   +1 more source

Cleavage‐Resistant CYLD Protects Against Autoimmune Hepatitis

open access: yesAdvanced Science, EarlyView.
Proteolytic cleavage of the deubiquitinase CYLD emerges as a critical driver of autoimmune hepatitis. TNFα‐induced CYLD loss in macrophages amplifies S100A9‐triggered MAPK activation, leading to excessive chemokine production and hepatic inflammation. Pharmacological inhibition of MEK signaling effectively attenuates experimental disease, highlighting ...
Han Liu   +13 more
wiley   +1 more source

Proteogenomic Characterization Reveals Subtype‐Specific Therapeutic Potential for HER2‐Low Breast Cancer

open access: yesAdvanced Science, EarlyView.
Multiomic profiling of HER2‐low breast cancer identifies three proteomic subtypes with distinct therapeutic strategies: endocrine, antiangiogenic, and anti‐HER2 therapies. Genomic and lactate modification landscapes are detailed, providing insights for precise management.
Shouping Xu   +20 more
wiley   +1 more source

ERM Inhibition Confers Ferroptosis Resistance through ROS‐Induced NRF2 Signaling

open access: yesAdvanced Science, EarlyView.
ERM inhibition disrupts ERM‐actin interactions, elevating ROS and triggering KEAP1 degradation, which stabilizes and activates NRF2. Nuclear NRF2 induces cytoprotective genes, notably HMOX1, enhancing redox buffering and suppressing lipid peroxidation to resist erastin‐induced ferroptosis.
Menghao Qiao   +19 more
wiley   +1 more source

MDP25‐VDAC3 Complex Orchestrates Actin Remodeling and Mitochondrial Dynamics to Modulate Innate Immunity in Arabidopsis

open access: yesAdvanced Science, EarlyView.
This study reveals that actin remodeling regulates mitochondrial elongation as a defense strategy in plants. Flagellin perception induces fusion‐dependent elongation, supported by cortical actin bundles, to repair damage and boost ATP and ROS production.
Junxiu Hou   +5 more
wiley   +1 more source

MicroRNA‐375‐3p Targets Fatty Acid Synthase and Relish to Regulate Energy Allocation During Pupal Metamorphosis and Starvation

open access: yesAdvanced Science, EarlyView.
During pupal metamorphosis and starvation, elevated 20‐hydroxyecdysone (20E) and suppressed insulin trigger Forkhead box O (FOXO) nuclear translocation, enhancing miR‐375‐3p expression. This downregulates fatty acid synthase (FASN) and Relish, promoting lipid breakdown for energy while prioritizing antioxidant responses over immune functions to support
Peng Chen   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy