Results 251 to 260 of about 9,117,404 (329)

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

Defect Analysis of the β– to γ–Ga2O3 Phase Transition

open access: yesAdvanced Functional Materials, EarlyView.
The role of defects at all the relevant stages of the β$\beta$‐ to γ$\gamma$‐Ga2O3 polymorph transition is investigated using a multi method approach. The positron annihilation spectroscopy based results show that the defect density decreases after the transition, and that changes in defect configuration within the γ phase occur with increasing ...
Umutcan Bektas   +9 more
wiley   +1 more source

Composites of Shellac and Silver Nanowires as Flexible, Biobased, and Corrosion‐Resistant Transparent Conductive Electrodes

open access: yesAdvanced Functional Materials, EarlyView.
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein   +4 more
wiley   +1 more source

Cryo‐EM of Rationally Designed Photosystem I Nanoassembly on Graphene Validates Orientation‐Driven Enhancement of Photocatalytic Performance

open access: yesAdvanced Functional Materials, EarlyView.
The first cryo‐EM visualization and quantification of oriented Photosystem I (PSI) on single‐layer graphene is reported. Domain‐specific covalent anchoring of PSI, with the reducing side of the biophotocatalyst toward graphene, promotes three‐fold higher anodic photocurrent generation compared to a randomly physisorbed counterpart. This approach allows
Miriam Izzo   +6 more
wiley   +1 more source

Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride

open access: yesAdvanced Functional Materials, EarlyView.
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley   +1 more source

Photoswitching Conduction in Framework Materials

open access: yesAdvanced Functional Materials, EarlyView.
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez   +4 more
wiley   +1 more source

Biomimetic Iridescent Skin: Robust Prototissues Spontaneously Assembled from Photonic Protocells

open access: yesAdvanced Functional Materials, EarlyView.
Uniform nanoparticles are induced to form arrays (photonic crystals) in the cores of biopolymer capsules, endowing these ‘protocells’ with structural color. These protocells are then assembled into large self‐standing objects, i.e., prototissues, with robust mechanical properties as well as iridescent optical properties.
Medha Rath   +6 more
wiley   +1 more source

Mechanical Properties of Architected Polymer Lattice Materials: A Comparative Study of Additive Manufacturing and CAD Using FEM and µ‐CT

open access: yesAdvanced Functional Materials, EarlyView.
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy