Results 31 to 40 of about 9,544 (144)
Homomorphisms and Topological Semigroups.
In recent years considerable interest has been evinced in the problem of the structure of topological semigroups. In the theory of groups, the study of the character groups and the group algebra of a locally compact commutative topological group has ...
N. J. Rothman
semanticscholar +1 more source
2‐Adic Quantum Mechanics, Continuous‐Time Quantum Walks, and the Space Discreteness
Abstract The authors show that a large class of 2‐adic Schrödinger equations is the scaling limit of certain continuous‐time quantum Markov chains (CTQMCs). Practically, a discretization of such an equation gives a CTQMC. As a practical result, new types of continuous‐time quantum walks (CTQWs) on graphs using two symmetric matrices are constructed ...
W. A. Zúñiga‐Galindo
wiley +1 more source
Growth problems in diagram categories
Abstract In the semisimple case, we derive (asymptotic) formulas for the growth rate of the number of summands in tensor powers of the generating object in diagram/interpolation categories.
Jonathan Gruber, Daniel Tubbenhauer
wiley +1 more source
This paper has three parts. First, we study and characterize amenable and extremely amenable topological semigroups in terms of invariant measures using integral logic.
Khanaki, Karim
core +1 more source
On the dimension of orthogonal projections of self‐similar measures
Abstract Let ν$\nu$ be a self‐similar measure on Rd$\mathbb {R}^d$, d⩾2$d\geqslant 2$, and let π$\pi$ be an orthogonal projection onto a k$k$‐dimensional subspace. We formulate a criterion on the action of the group generated by the orthogonal parts of the iterated function system on π$\pi$, and show that it ensures that the dimension of πν$\pi \nu$ is
Amir Algom, Pablo Shmerkin
wiley +1 more source
Hausdorff dimensions of irreducible Markov hom tree‐shifts
Abstract This paper features a Cramér's theorem for finite‐state Markov chains indexed by rooted d$d$‐trees, obtained via the method of types in the classical analysis of large deviations. Along with the theorem comes two applications: an almost‐sure type convergence of sample means and a formula for the Hausdorff dimension of the symbolic space ...
Jung‐Chao Ban+2 more
wiley +1 more source
On braid monodromy factorizations
We introduce and develop a language of semigroups over the braid groups for a study of braid monodromy factorizations (bmf's) of plane algebraic curves and other related objects.
Kharlamov, V., Kulikov, Vik. S.
core +1 more source
Traces on the uniform tracial completion of Z$\mathcal {Z}$‐stable C∗${\rm C}^*$‐algebras
Abstract The uniform tracial completion of a C∗${\rm C}^*$‐algebra A$A$ with compact trace space T(A)≠∅$T(A) \ne \emptyset$ is obtained by completing the unit ball with respect to the uniform 2‐seminorm ∥a∥2,T(A)=supτ∈T(A)τ(a∗a)1/2$\Vert a\Vert _{2,T(A)}=\sup _{\tau \in T(A)} \tau (a^*a)^{1/2}$. The trace problem asks whether every trace on the uniform
Samuel Evington
wiley +1 more source
Substitutions on compact alphabets
Abstract We develop a systematic approach to continuous substitutions on compact Hausdorff alphabets. Focussing on implications of irreducibility and primitivity, we highlight important features of the topological dynamics of their (generalised) subshifts.
Neil Mañibo, Dan Rust, James J. Walton
wiley +1 more source
Topological invariants for semigroups of holomorphic self-maps of the unit disc
Let $(\varphi_t)$, $(\phi_t)$ be two one-parameter semigroups of holomorphic self-maps of the unit disc $\mathbb D\subset \mathbb C$. Let $f:\mathbb D \to \mathbb D$ be a homeomorphism.
Bracci, Filippo+2 more
core +1 more source