Results 31 to 40 of about 9,280 (92)
A variant of the Hales-Jewett Theorem
It was shown by V. Bergelson that any set B with positive upper multiplicative density contains nicely intertwined arithmetic and geometric progressions: For each positive integer k there exist integers a,b,d such that $ {b(a+id)^j:i,j \in\nhat k}\subset
Beiglböck, Mathias
core +2 more sources
On Endomorphism Universality of Sparse Graph Classes
ABSTRACT We show that every commutative idempotent monoid (a.k.a. lattice) is the endomorphism monoid of a subcubic graph. This solves a problem of Babai and Pultr and the degree bound is best‐possible. On the other hand, we show that no class excluding a minor can have all commutative idempotent monoids among its endomorphism monoids. As a by‐product,
Kolja Knauer, Gil Puig i Surroca
wiley +1 more source
Attractors for an Energy‐Damped Viscoelastic Plate Equation
ABSTRACT In this paper, we consider a class of non‐autonomous beam/plate equations with an integro‐differential damping given by a possibly degenerate memory and an energy damping given by a nonlocal ε$$ \varepsilon $$‐perturbed coefficient. For each ε>0$$ \varepsilon >0 $$, we show that the dynamical system generated by the weak solutions of the ...
V. Narciso +3 more
wiley +1 more source
We consider partitioned graphs, by which we mean finite strongly connected directed graphs with a partitioned edge set $ {\mathcal E} ={\mathcal E}^- \cup{\mathcal E}^+$. With additionally given a relation $\mathcal R$ between the edges in ${\mathcal E}^-
Béal +9 more
core +1 more source
A coboundary Temperley–Lieb category for sl2$\mathfrak {sl}_{2}$‐crystals
Abstract By considering a suitable renormalization of the Temperley–Lieb category, we study its specialization to the case q=0$q=0$. Unlike the q≠0$q\ne 0$ case, the obtained monoidal category, TL0(k)$\mathcal {TL}_0(\mathbb {k})$, is not rigid or braided. We provide a closed formula for the Jones–Wenzl projectors in TL0(k)$\mathcal {TL}_0(\mathbb {k})$
Moaaz Alqady, Mateusz Stroiński
wiley +1 more source
On representation of semigroups of inclusion hyperspaces
Given a group $X$ we study the algebraic structure of the compactright-topological semigroup $G(X)$ consisting of inclusionhyperspaces on $X$. This semigroup contains the semigroup$lambda(X)$ of maximal linked systems as a closed subsemigroup.We ...
Gavrylkiv V.M.
doaj
Distributive inverse semigroups and non-commutative Stone dualities [PDF]
We develop the theory of distributive inverse semigroups as the analogue of distributive lattices without top element and prove that they are in a duality with those etale groupoids having a spectral space of identities, where our spectral spaces are not
Lawson, Mark V, Lenz, Daniel H
core
On multiplicative recurrence along linear patterns
Abstract Donoso, Le, Moreira, and Sun (J. Anal. Math. 149 (2023), 719–761) study sets of recurrence for actions of the multiplicative semigroup (N,×)$(\mathbb {N}, \times)$ and provide some sufficient conditions for sets of the form S={(an+b)/(cn+d):n∈N}$S=\lbrace (an+b)/(cn+d) \colon n \in \mathbb {N}\rbrace $ to be sets of recurrence for such actions.
Dimitrios Charamaras +2 more
wiley +1 more source
2‐Adic Quantum Mechanics, Continuous‐Time Quantum Walks, and the Space Discreteness
Abstract The authors show that a large class of 2‐adic Schrödinger equations is the scaling limit of certain continuous‐time quantum Markov chains (CTQMCs). Practically, a discretization of such an equation gives a CTQMC. As a practical result, new types of continuous‐time quantum walks (CTQWs) on graphs using two symmetric matrices are constructed ...
W. A. Zúñiga‐Galindo
wiley +1 more source
On the dimension of orthogonal projections of self‐similar measures
Abstract Let ν$\nu$ be a self‐similar measure on Rd$\mathbb {R}^d$, d⩾2$d\geqslant 2$, and let π$\pi$ be an orthogonal projection onto a k$k$‐dimensional subspace. We formulate a criterion on the action of the group generated by the orthogonal parts of the iterated function system on π$\pi$, and show that it ensures that the dimension of πν$\pi \nu$ is
Amir Algom, Pablo Shmerkin
wiley +1 more source

